Medical Treatment Guidelines

Elbow Injuries

Adapted by NYS Workers’ Compensation Board (“WCB”) from MDGuidelines® with permission of Reed Group, Ltd. (“ReedGroup”), which is not responsible for WCB’s modifications. MDGuidelines® are Copyright 2019 Reed Group, Ltd. All Rights Reserved. No part of this publication may be reproduced, displayed, disseminated, modified, or incorporated in any form without prior written permission from ReedGroup and WCB. Notwithstanding the foregoing, this publication may be viewed and printed solely for internal use as a reference, including to assist in compliance with WCL Sec. 13-0 and 12 NYCRR Part 44[0], provided that (i) users shall not sell or distribute, display, or otherwise provide such copies to others or otherwise commercially exploit the material. Commercial licenses, which provide access to the online text-searchable version of MDGuidelines®, are available from ReedGroup at www.mdguidelines.com.
Contributors

The NYS Workers’ Compensation Board would like to thank the members of the New York Workers’ Compensation Board Medical Advisory Committee (MAC). The MAC served as the Board’s advisory body to adapt the American College of Occupational and Environmental Medicine (ACOEM) Practice Guidelines to a New York version of the Medical Treatment Guidelines (MTG). In this capacity, the MAC provided valuable input and made recommendations to help guide the final version of these Guidelines. With full consensus reached on many topics, and a careful review of any dissenting opinions on others, the Board established the final product.

Medical Advisory Committee

Joseph Canovas, Esq.
Special Counsel
New York State AFL-CIO

Kenneth B. Chapman, MD
Director Pain Medicine, SIUH Northwell Health Systems
Assistant Clinical Professor, NYU Langone Medical Center
Adjunct Assistant Professor, Hofstra Medical School

Lev Ginsburg, Esq.
Senior Director of Government Affairs
The Business Council of New York State

Robert Goldberg, DO
Attending Physician – Department of Rehabilitation, Beth Israel Hospital and Medical Center of NYC
Professor of Physical Medicine and Rehabilitation and Health Policy
Clinical Associate Professor of Rehabilitation Medicine, New York Medical College
Clinical Professor of Rehabilitation Medicine, Philadelphia College of Osteopathic Medicine
Member Council on Medical Education of the American Medical Association

Joseph Pachman, MD, PhD, MBA, MPH
Licensed Psychologist and Physician
Board Certified in Occupational Medicine
Fellow in ACOEM
Vice President and National Medical Director, Liberty Mutual

Elain Sobol Berger, MD, Esq.
Medical Director and Senior Policy Advisor
NYS Workers’ Compensation Board

James A. Tacci, MD, JD, MPH (FACOEM, FACP)
University of Rochester Medical Center
Attending Physician: Strong Occupational & Environmental Medicine, Strong Memorial Hospital
Associate Professor of Clinical Environmental Medicine: Department of Environmental Medicine
Associate Professor and Preventive Medicine Residency Director: Department of Public Health Sciences
Medical Director: URMC Travel Medicine / Passport Health of Upstate New York
Edward C. Tanner, MD,
Chair, Department of Orthopaedics at Rochester General Hospital
Past President, New York State Society of Orthopaedic Surgeons (NYSSOS)
Member, American Academy of Orthopaedic Surgeons (AAOS)
Member, American Association of Hip and Knee Surgeons (AAHKS)

Contributors to ACOEM Elbow Disorders Guideline

Editor-in-Chief:
Kurt T. Hegmann, MD, MPH, FACP

Evidence-based Practice Elbow Panel Chair:
Harold E. Hoffman, MD, FACP

Evidence-based Practice Elbow Panel Members:
Roger M. Belcourt, MD, MPH, FACP
Kevin Byrne, MD, MPH, FACP
Jed Downs, MD, MPH
Lee Glass, MD, JD
J. Mark Melhorn, MD, FAAOS, FACP
Jack Richman, MD, CCBOM, FACP
Phillip Zinni, III, DO, FACP

Methodology Committee Consultant:
Kurt T. Hegmann, MD, MPH, FACP

Managing Editors:
Production: Marianne Dreger, MA
Research: Julie A. Ording, MPH

Editorial Assistant:
Debra M. Paddack

Research Conducted By:
Kurt T. Hegmann, MD, MPH, FACP
Matthew S. Thiese, PhD, MSPH
Ulrike Ott, MSPH
Kylee Tokita
Jessica Melendez
Deborah Gwenevere
Passey Atim
Cecelia Effiong, BS
Riann Bree Robbins, BS
William Gilbert Caughey
Holly Uphold, BS

Specialty Society and Society Representative Listing:
ACOEM acknowledges the following organizations and their representatives who served as reviewers of the Elbow Disorders chapter. Their contributions are greatly appreciated. By listing the following...
individuals or organizations, it does not infer that these individuals or organizations support or endorse the elbow treatment guidelines developed by ACOEM.

American Academy of Orthopaedic Surgeons

The American Occupational Therapy Association
Marian Arbesman, PhD, OTR/L
Paula Bohr, PhD, OTR/L, FAOTA

American Physical Therapy Association
Paul LaStayo, PT, PhD, CHT

Other External Reviewers:
Robert M. Szabo, MD, MPH
Table of Contents

A. General Guideline Principles ... 7
 A.1 Medical Care ... 7
 A.2 Rendering Of Medical Services ... 7
 A.3 Positive Patient Response ... 7
 A.4 Re-Evaluate Treatment ... 7
 A.5 Education .. 7
 A.6 Acuity ... 8
 A.7 Initial Evaluation .. 8
 A.8 Diagnostic Time Frames .. 8
 A.9 Treatment Time Frames ... 8
 A.10 Delayed Recovery ... 8
 A.11 Active Interventions ... 8
 A.12 Active Therapeutic Exercise Program ... 9
 A.13 Diagnostic Imaging And Testing Procedures 9
 A.14 Surgical Interventions .. 9
 A.15 Pre-Authorization .. 9
 A.16 Personality/Psychological/Psychosocial Evaluations 10
 A.17 Personality/Psychological/Psychosocial Intervention 10
 A.18 Functional Capacity Evaluation (FCE) ... 10
 A.19 Return To Work ... 11
 A.20 Job Site Evaluation ... 11
 A.21 Guideline Recommendations And Medical Evidence 12
 A.22 Experimental/Investigational Treatment 12
 A.23 Injured Workers As Patients ... 12
 A.24 Scope Of Practice .. 12

B. Introduction to Elbow Injury ... 13
 B.1 History Taking and Physical Examination 13
 B.2 Red Flags ... 14

C. Diagnostic Testing and Testing Procedures ... 15
 C.1 Introduction ... 15
 C.2 Diagnostic Criteria and Differential Diagnosis 16
 C.2.a Elbow Arthroscopy .. 19
C.2.b Bone Scans .. 20
C.2.c Computerized Tomography .. 21
C.2.d Electromyography and Nerve Conduction Studies (Electrodiagnostic Studies) 22
C.2.e Magnetic Resonance Imaging (MRI) ... 23
C.2.f Roentgenograms (X-RAYS) ... 23
C.2.g Single Proton Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) 24
C.2.h Ultrasound .. 24
C.2.i Laboratory Testing ... 24
D. Conditions .. 26
D.1 Contusions ... 27
D.2 Lateral Epicondylitis (Epicondylalgia) ... 27
D.3 Olecranon Bursitis .. 40
D.4 Elbow Fractures, including Non-Displaced Radial Head Fractures 43
D.5 Elbow Dislocations ... 47
D.6 Elbow Lacerations .. 52
D.7 Elbow Sprains ... 52
D.8 Biceps Tendinosis (or Tendinitis) and Tears/Ruptures .. 55
D.9 Triceps Tendinosis (or Tendinitis) and Tears/Ruptures .. 61
D.10 Ulnar Neuropathies at the Elbow; Including Condylar Grove Associated Ulnar Neuropathy and Cubital Tunnel Syndrome ... 61
D.11 Radial Nerve Entrapment (Including Radial Tunnel Syndrome) 71
D.12 Pronator Syndrome (Median Neuropathies in the Forearm) 76
Appendix One: Evidence of Use Tables ... 82
Appendix Two: Low-quality Randomized Controlled Trials and Non-randomized Studies ... 147
Appendix Three: References ... 164
A. General Guideline Principles

The principles summarized in this section are key to the intended application of the New York State Medical Treatment Guidelines (MTG) and are applicable to all Workers’ Compensation Medical Treatment Guidelines.

A.1 Medical Care
Medical care and treatment required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient’s daily and work activities and return to work, while striving to restore the patient’s health to its pre-injury status in so far as is feasible.

A.2 Rendering Of Medical Services
Any medical provider rendering services to a workers’ compensation patient must utilize the Treatment Guidelines as provided for with respect to all work-related injuries and/or illnesses.

A.3 Positive Patient Response
Positive results are defined primarily as functional gains which can be objectively measured. Objective functional gains include, but are not limited to, positional tolerances, range of motion, strength, endurance, activities of daily living (ADL), cognition, psychological behavior, and efficiency/velocity measures which can be quantified. Subjective reports of pain and function should be considered and given relative weight when the pain has anatomic and physiologic correlation.

A.4 Re-Evaluate Treatment
If a given treatment or modality is not producing positive results, the provider should either modify or discontinue the treatment regime. The provider should evaluate the efficacy of the treatment or modality two to three weeks after the initial visit and 3 to 4 weeks thereafter. Recognizing that treatment failure is at times attributable to an incorrect diagnosis should prompt the clinician to reconsider the diagnosis in the event of an unexpected poor response to an otherwise rational intervention.

A.5 Education
Education of the patient and family, as well as the employer, insurer, policy makers and the community should be a primary emphasis in the treatment of work-related injury or illness. Practitioners should develop and implement effective educational strategies and skills. An education-based paradigm should always start with communication providing reassuring information to the patient. No treatment plan is complete without addressing issues of individual and/or group patient education as a means of facilitating self-management of symptoms and prevention of future injury.

Time Frames
A.6 **Acuity**

Acute, Subacute and Chronic are generally defined as timeframes for disease stages:
- **Acute** – Less than one month;
- **Subacute** – One to three months; and
- **Chronic** – greater than three months.

A.7 **Initial Evaluation**

Initial evaluation refers to the acute timeframe following an injury and is not used to define when a given physician first evaluates an injured worker (initial encounter) in an office or clinical setting.

A.8 **Diagnostic Time Frames**

Diagnostic time frames for conducting diagnostic testing commence on the date of injury. Clinical judgment may substantiate the need to accelerate or decelerate the time frames discussed in this document.

A.9 **Treatment Time Frames**

Treatment time frames for specific interventions commence once treatments have been initiated, not on the date of injury. Obviously, duration may be impacted by disease process and severity, patient compliance, as well as availability of services. Clinical judgment may substantiate the need to accelerate or decelerate the time frames discussed in this document.

A.10 **Delayed Recovery**

For those patients who fail to make expected progress 6-12 weeks after an injury, reexamination in order to confirm the accuracy of the diagnosis and re-evaluation of the treatment program should be performed. Assessment for potential barriers to recovery (yellow flags/psychological issues) should be ongoing throughout the care of the patient. However, at 6-12 weeks, alternate treatment programs, including formal psychological or psychosocial evaluation, should be considered. Referrals to mental health providers (i.e.: psychology/psychiatry) for the evaluation and management of delayed recovery do not indicate or require the establishment of a psychiatric or psychological condition. The evaluation and management of delayed recovery does not require the establishment of a psychiatric or psychological claim.

Treatment Approaches

A.11 **Active Interventions**

Active interventions emphasizing patient responsibility, such as therapeutic exercise and/or functional treatment, are generally emphasized over passive modalities, especially as treatment progresses. Generally, passive and palliative interventions are viewed as a means to facilitate progress in an active rehabilitation program with concomitant attainment of objective functional gains.
A.12 Active Therapeutic Exercise Program

Active therapeutic exercise program goals should incorporate patient strength, endurance, flexibility, range of motion, sensory integration, coordination, and education as clinically indicated. This includes functional application in vocational or community settings.

A.13 Diagnostic Imaging And Testing Procedures

Clinical information obtained by history taking and physical examination should be the basis for selection and interpretation of imaging procedure results. All diagnostic procedures have variable specificity and sensitivity for various diagnoses.

When a diagnostic procedure, in conjunction with clinical information, provides sufficient information to establish an accurate diagnosis, a second diagnostic procedure will be redundant if it is performed only for diagnostic purposes. At the same time, a subsequent diagnostic procedure (that may be a repeat of the same procedure, when the rehabilitation physician, radiologist or surgeon documents the study was of inadequate quality to make a diagnosis) can be a complementary diagnostic procedure if the first or preceding procedures, in conjunction with clinical information, cannot provide an accurate diagnosis, and is permissible under the MTG.

It is recognized that repeat imaging studies and other tests may be warranted by the clinical course and to follow the progress of treatment in some cases. It may be of value to repeat diagnostic procedures (e.g., imaging studies) during the course of care to reassess or stage the pathology when there is progression of symptoms or findings, prior to surgical interventions and therapeutic injections when warranted, and post-operatively to follow the healing process. Regarding CT examinations, it must be recognized that repeat procedures result in an increase in cumulative radiation dose and associated risks.

A.14 Surgical Interventions

Contemplation of surgery should be within the context of expected functional outcome. The concept of "cure" with respect to surgical treatment by itself is generally a misnomer. All operative interventions must be based upon positive correlation of clinical findings, clinical course and imaging and other diagnostic tests. A comprehensive assimilation of these factors must lead to a specific diagnosis with positive identification of pathologic condition(s). For surgery to be performed to treat pain, there must be clear correlation between the pain symptoms and objective evidence of its cause. In all cases, shared decision making with the patient is advised. The patient should be given the opportunity to understand the pros and cons of surgery, potential for rehabilitation as an alternative where applicable, evidence-based outcomes, and specific surgical experience.

A.15 Pre-Authorization

All diagnostic imaging, testing procedures, non-surgical and surgical therapeutic procedures within the criteria of the Medical Treatment Guidelines and based on a correct application of the Medical Treatment Guidelines are considered authorized, with the exception of the following procedures: Lumbar Fusion, Artificial Disc Replacements, Vertebroplasty, Kyphoplasty, Electrical Bone Growth Stimulators, Spinal Cord Stimulators, Intrathecal Drug Delivery (Pain Pumps), Osteochondral Autograft, Autologous Chondrocyte Implantation, Meniscal Allograft Transplantation and Knee Arthroplasty (Total or Partial Knee Joint Replacement). These are not included on the list of pre-
authorized procedures. Providers who want to perform one of these procedures must request pre-authorization from the carrier before performing the procedure.

Second or subsequent procedures (the repeat performance of a surgical procedure due to failure of, or incomplete success from the same surgical procedure performed earlier, if the Medical Treatment Guidelines do not specifically address multiple procedures) also require pre-authorization.

A.16 Personality/Psychological/Psychosocial Evaluations

In select patients, diagnostic testing procedures may be useful when there is a discrepancy between diagnosis, signs, symptoms, clinical concerns or functional recovery. Psychological testing should provide differentiation between pre-existing depression versus injury-caused depression, as well as post-traumatic stress disorder, and other psychosocial issues that may include work or non-work-related issues when such conditions are identified in the patient.

For those patients who fail to make expected progress 6-12 weeks after an injury and whose subjective symptoms do not correlate with objective signs and tests, reexamination in order to confirm the accuracy of the diagnosis should be made. Formal psychological or psychosocial evaluation may be considered.

A professional fluent in the primary language of the patient is strongly preferred. When such a provider is not available, services of a professional language interpreter must be provided.

Frequency: One time visit for evaluation. If psychometric testing is indicated by findings in the initial evaluation, time for such testing should not exceed an additional two hours of professional time.

A.17 Personality/Psychological/Psychosocial Intervention

Following psychosocial evaluation, when intervention is recommended, such intervention should be implemented as soon as possible. This can be used alone or in conjunction with other treatment modalities.

- Time to produce effect: 2 to 8 weeks.
- Optimum duration: 6 weeks to 3 months.
- Maximum duration: 3 to 6 months. Counseling is not intended to delay but to enhance functional recovery. For select patients, longer supervision may be required, and if further counseling is indicated, documentation of the nature of the psychological factors, as well as projecting a realistic functional prognosis, should be provided by the authorized treating practitioner every 4 to 6 weeks during treatment.

A.18 Functional Capacity Evaluation (FCE)

Functional capacity evaluation is a comprehensive or more restricted evaluation of the various aspects of function as they relate to the patient’s ability to return to work. Areas such as endurance, lifting (dynamic and static), postural tolerance, specific range-of-motion, coordination and strength, worker habits, employability, as well as psychosocial, cognitive, and sensory perceptual aspects of competitive employment may be evaluated. Components of this evaluation may include: (a) musculoskeletal screen; (b) cardiovascular profile/aerobic capacity; (c) coordination; (d) lift/carrying analysis; (e) job-
specific activity tolerance; (f) maximum voluntary effort; (g) pain assessment/psychological screening; (h) non-material and material handling activities; (i) cognitive; (j) visual; and (k) sensory perceptual factors.

In most cases, the question of whether a patient can return to work can be answered without an FCE.

When an FCE is being used to determine return to a specific job site, the treating physician is responsible for understanding and considering the job duties. FCEs cannot be used in isolation to determine work restrictions. The authorized treating physician must interpret the FCE in light of the individual patient’s presentation and medical and personal perceptions. FCEs should not be used as the sole criteria to diagnose malingering.

An FCE may be considered at time of MMI, following reasonable prior attempts to return to full duty throughout course of treatment, when the treating physician is unable to make a clear determination on work status on case closure.

A.19 Return To Work

For purposes of these guidelines, return to work is defined as any work or duty that the patient is able to perform safely. It may not be the patient’s regular work. Ascertaining a return to work status is part of medical care, and should be included in the treatment and rehabilitation plan. It is normally addressed at every outpatient visit. A description of the patient’s status and task limitations is part of any treatment plan and should provide the basis for restriction of work activities when warranted. Early return to work should be a prime goal in treating occupational injuries. The emphasis within these guidelines is to move patients along a continuum of care and return to work, since the prognosis of returning an injured worker to work drops progressively the longer the worker has been out of work.

A.20 Job Site Evaluation

The treating physician may communicate with the employer or the employer’s designee, either in person or by telephone, to obtain information regarding the demands of the patient’s pre-injury job, including a description of the exertional demands of the job, the need for repetitive activities, load lifting, static or awkward postures, or any other factors that would pose a risk of re-injury or impediment of convalescence. When returning to work at the patient’s previous job task/setting is not feasible, given the clinically determined restrictions on the patient’s activities, inquiry should also be made about modified duty work settings, and a similar set of questions should be posed by the physician about work activities/demands in modified duty jobs.

Ideally, the physician would gain the most information from an on-site inspection of the job settings and activities; but it is recognized that this may not be feasible in most cases. If job videos/CDs/DVDs are available from the employer, these can contribute valuable information.

Frequency: 1 or 2 calls
- 1st call: Patient is in a functional state where the patient can perform some work.
- 2nd call: Patient has advanced to state where the patient is capable of enhanced functional demands in a work environment.
The physician shall document the conversation.

Other

A.21 Guideline Recommendations And Medical Evidence
The Workers’ Compensation Board and its Medical Advisory Committee have not independently evaluated or vetted the scientific medical literature used in support of the guidelines, but have relied on the methodology used by the developers of various guidelines utilized and referenced in these Guidelines.

A.22 Experimental/Investigational Treatment
Medical treatment that is experimental/investigational and not approved for any purpose, application or indication by the FDA is not permitted under these Guidelines.

A.23 Injured Workers As Patients
In these Guidelines, injured workers are referred to as patients recognizing that in certain circumstances there is no doctor-patient relationship.

A.24 Scope Of Practice
These Guidelines do not address scope of practice or change the scope of practice.
Elbow Injuries
Effective: MM/DD/YY

B. Introduction to Elbow Injury

B.1 History Taking and Physical Examination

History taking and physical examination establish the foundation/basis for and dictate subsequent stages of diagnostic and therapeutic procedures. When findings of clinical evaluations and those of other diagnostic procedures are not consistent with each other, the objective clinical findings should have preference. The medical records should reasonably document the following:

B.1.a History of Present Injury

- Mechanism of injury: This includes details of symptom onset and progression, and symptoms that may arise from postural or functional accommodation to the knee elbow injury;
- Relationship to work: This includes a statement of the probability that the illness or injury is work-related;
- Prior occupational and non-occupational injuries: To the same area including specific prior treatment;
- Ability to perform job duties and activities of daily living; and
- Exacerbating and alleviating factors for symptoms; not limited to the elbow.

B.1.b Past History

- Past medical history includes, but is not limited to, neoplasm, gout, arthritis, and diabetes;
- Review of systems includes, but is not limited to, symptoms of rheumatologic, neurologic, endocrine, neoplastic, and other systemic diseases;
- Smoking history;
- Vocational and recreational pursuits;
- Prior imaging studies; and
- Past surgical history.

B.1.c Physical Examination
Examination of a joint should include the joint above and below the affected area, including the opposite side for comparison. Physical examination should include accepted tests and exam techniques applicable to the joint or area being examined, including:

- Visual inspection;
- Palpation;
- Range of motion/quality of motion (active and passive);
- Strength (weakness/atrophy);
- Joint integrity/stability;
- Examination for deformity (including claw phenomenon/displacement);
- If applicable to injury, integrity of distal circulation; and/or
- If applicable, neurological exam (i.e: sensory and motor function, reflexes) as clinically indicated.

B.2 Red Flags

Certain findings, “red flags”, raise suspicion of potentially serious medical conditions. Assessment (history and physical examination) should include evaluation for red flags. In the elbow these findings or indicators may include: fracture, dislocations, infection or inflammation; and neurological or vascular compromise including compartment syndrome. Further evaluation/consultation or urgent/emergency intervention may be indicated, and the New York Elbow Injury Medical Treatment Guidelines incorporate changes in clinical management triggered by the presence of “red flags.”

Table 1 - Red Flags for Potentially Serious Elbow Disorders

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Medical History</th>
<th>Physical Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture</td>
<td>History of significant trauma</td>
<td>Deformity consistent with fracture</td>
</tr>
<tr>
<td></td>
<td>Fall on outstretched hand</td>
<td>Reduced range(s) of motion</td>
</tr>
<tr>
<td></td>
<td>Fall onto lateral elbow</td>
<td>Pain with range of motion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disturbance in the triangular relationship between the olecranon and the epicondyles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Significant bruising, if subacute (unusual)</td>
</tr>
<tr>
<td>Dislocation</td>
<td>History of fall/trauma as above</td>
<td>Deformity consistent with dislocation</td>
</tr>
<tr>
<td></td>
<td>History of deformity with or without spontaneous reduction</td>
<td>Hemarthrosis</td>
</tr>
<tr>
<td>Infection</td>
<td>Pain, swelling, redness</td>
<td>Localized heat, swelling, erythema</td>
</tr>
<tr>
<td></td>
<td>Diabetes mellitus</td>
<td>Purulence</td>
</tr>
<tr>
<td></td>
<td>History of immunosuppression</td>
<td>Erythematous streaks, especially from a portal of entry</td>
</tr>
<tr>
<td></td>
<td>(e.g., transplant, chemotherapy, HIV)</td>
<td>Systemic signs of infection</td>
</tr>
<tr>
<td></td>
<td>History of systemic symptoms</td>
<td></td>
</tr>
</tbody>
</table>
Tumor
- History of cancer
- Unintentional weight loss
- Continuous pain, especially at night and not improved with rest
- Palpable mass not consistent with usual diagnoses

Inflammation
- History of gout or pseudogout
- History of rheumatoid arthritis
- History of other inflammatory arthritides
- Effusion
- Localized heat, swelling, erythema, tenderness

Rapidly Progressive Neurologic Deficit
- History of neurologic disease
- Trauma
- Abnormal neurologic examination
- Focal or global motor weakness distal to the elbow
- Weakness may be limited to one nerve, such as hand intrinsic muscles

Vascular Compromise
- History of diabetes mellitus
- Tobacco use
- History of fracture or dislocation
- History of vascular disease of any kind
- Decreased or absent peripheral pulses and delayed capillary refill
- Edema

Compartment Syndrome
- History of trauma, surgery or extreme unaccustomed forceful activity
- Persistent forearm pain and “tightness”
- Tingling, burning, or numbness
- Palpable tenderness and tension of involved compartment
- Pain intensified with stretch to involved muscles
- Paresthesia, paresis, and sensory deficits
- Diminished pulse and prolonged capillary refill

C. Diagnostic Testing and Testing Procedures

C.1 Introduction

One diagnostic imaging procedure may provide the same or distinctive information as obtained by other procedures. Therefore, prudent choice of procedure(s) for a single diagnostic procedure, a complementary procedure in combination with other procedures(s), or a proper sequential order in multiple procedures will ensure maximum diagnostic accuracy, minimize adverse effect to patients and promote cost effectiveness by avoiding duplication or redundancy.

All diagnostic imaging procedures have a significant percentage of specificity and sensitivity for various diagnoses. None is specifically characteristic of a certain diagnosis. Clinical information obtained by history taking and physical examination should be the basis for selection and interpretation of imaging procedure results.

When a diagnostic procedure, in conjunction with clinical information, provides sufficient information to establish an accurate diagnosis, the second diagnostic procedure will be redundant if it is performed only for diagnostic purposes. At the same time, a subsequent diagnostic procedure (that may be a repeat of the same procedure, when the rehabilitation physician, radiologist or surgeon documents that the study was of inadequate quality to make a diagnosis) can be a complementary diagnostic procedure if the first or preceding procedures, in conjunction with clinical information, cannot provide an accurate diagnosis. Usually, preference of a procedure over others depends upon availability, a patient’s tolerance, and/or the treating practitioner’s familiarity with the procedure.
It is recognized that repeat imaging studies and other tests may be warranted by the clinical course and to follow the progress of treatment in some cases. It may be of value to repeat diagnostic procedures (e.g. imaging studies) during the course of care to reassess or stage the pathology when there is progression of symptoms or findings, prior to surgical interventions and therapeutic injections when warranted, and post-operatively to follow the healing process. Regarding CT examinations, it must be recognized that repeat procedures result in an increase in cumulative radiation dose and associated risks.

When indicated, the following studies can be utilized for further evaluation of elbow injuries, based upon the mechanism of injury, symptoms, and patient history.

C.2 Diagnostic Criteria and Differential Diagnosis

The criteria presented in Table 2 follow the clinical thought process, from the mechanism of illness or injury, to unique symptoms and signs of a particular disorder. Elbow disorders, as described by the patient, can sometimes be consistent with radiating symptoms from the neck or shoulder, and the examining physician’s diagnostic acumen is important in determining the source. For example, mid-upper-arm pain on arm elevation is most likely related to a problem originating in the shoulder area, not the elbow, although patients may have pain in both areas. It is important to note that lateral elbow pain can be due to cervical disc disease (C6), radial nerve entrapment (including radial tunnel syndrome), synovitis due to degeneration, or true epicondylitis (enthesitis). A complaint of tingling and/or numbness in the fourth and fifth fingers is usually due to ulnar nerve impingement at the elbow, C8 cervical radiculopathy, or impingement of the ulnar nerve at the wrist. Thoracic outlet syndrome can be considered, although that condition is generally believed to be quite uncommon (see Shoulder Disorders chapter). For the differential diagnosis of lateral epicondylalgia, C6 radiculopathy is believed to be the most common alternate diagnosis and not infrequently presents with lateral elbow pain and paresthesias in the thumb. The differential diagnosis of medial epicondylalgia similarly includes C8 radiculopathy presenting as medial elbow pain and paresthesias in the fourth and fifth digits.

Medial collateral ligament problems may also present with medial elbow pain. Concomitant existence of medial epicondylalgia with ulnar neuropathy at the elbow frequently occurs. In cases of complaints that cannot be classified as a specific pathophysiological condition, a diagnosis of non-specific pain should be used. This is far preferable to specific labeling, which may not be accurate. Non-specific or regional pain will more frequently be the most appropriate diagnosis if there are no specific physical findings. The criteria presented in Table 2 below list the probable diagnosis or injury, potential mechanism(s) of illness or injury, symptoms, signs, and appropriate tests and results to consider in assessment and treatment.

For most patients presenting with non-traumatic elbow disorders, special studies are not needed during the first four weeks. Most patients improve quickly, provided red flag conditions are ruled out. Also, of note, a number of patients with elbow symptoms will have associated disease such as diabetes mellitus, hypothyroidism, renal disease, and one or more of the arthritides which are often heretofore undiagnosed. When medical history and/or physical examination findings indicate, or other risk factors are present, testing for these or other comorbid condition(s) is recommended.
Table 2 - Criteria for Non-Red Flag Conditions

<table>
<thead>
<tr>
<th>Probable Diagnosis or Injury</th>
<th>Mechanism</th>
<th>Symptoms</th>
<th>Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contusion</td>
<td>Direct blow</td>
<td>Local pain</td>
<td>Range of motion usually normal</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td></td>
<td>Soft tissue swelling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ecchymosis</td>
</tr>
</tbody>
</table>
| Lateral Epicondylalgia/Epicondylitis/Tendinosis | Possibly related to forceful use of elbow or wrist, repetition and postural factors | Pain in lateral elbow.
[Absence of tingling/numbness.]
[Absence of neck pain or stiffness.] | Tenderness over epicondyle and 2-3 centimeters distal to it over the extensor carpi radialis brevis and extensor digitorum tendons
Pain in lateral elbow with resisted extension of wrist or middle finger
Pain in the lateral elbow with forceful grasp
Normal elbow range of motion
Diffuse lateral elbow pain with repeated wrist dorsiflexion |
| Medial Epicondylalgia/Epicondylitis/Tendinosis | Etiology is unknown
Theorized to parallel that of lateral epicondylalgia | Pain in medial elbow
[Absence of tingling/numbness in most cases unless accompanied by ulnar neuropathy]
[Absence of neck pain or stiffness] | Tenderness over medial epicondyle or 2 to 3 centimeters distal to it
Pain in medial elbow with resisted wrist or phalangeal flexion
Normal elbow range of motion |
<p>| Olecranon Bursitis | Prolonged | Swelling of bursa | Effusion/mass |</p>
<table>
<thead>
<tr>
<th>Condition</th>
<th>Cause</th>
<th>Symptoms</th>
<th>Physical Exam Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(noninfectious)</td>
<td>leaning on elbow/chronic pressure
Acute trauma
Chronic pressure</td>
<td>Pain in bursa generally absent or minor
Effect in bursa
Tenderness over bursa generally not present or minor
Tenderness more likely with complications of inflammatory arthropathy</td>
<td></td>
</tr>
<tr>
<td>Olecranon Bursitis (infectious)</td>
<td>Trauma with non-intact dermis
Introduced infections from injection(s)<br:Systemic infection</td>
<td>Progressive painful swelling of bursa<br:Systemic signs of infection
Erythema, warmth and/or surrounding cellulitis
Marked tenderness over bursa</td>
<td></td>
</tr>
<tr>
<td>Nondisplaced Radial Head Fracture</td>
<td>Fall onto outstretched hand
Fall onto lateral elbow</td>
<td>Lateral elbow pain
Pain on pronation and supination of forearm
Maximal tenderness over radial head
Reduced elbow extension when compared with unaffected side</td>
<td></td>
</tr>
<tr>
<td>Biceps Tendinosis</td>
<td>Forceful flexion, particularly near maximal or repeated high force
Unaccustomed forceful use</td>
<td>Pain in anterior elbow joint or antecubital fossa
Tenderness on palpation of biceps myotendinous junction</td>
<td></td>
</tr>
<tr>
<td>Radial Nerve Entrapment (including Radial Tunnel Syndrome)</td>
<td>Etiology is unknown; there are no quality epidemiological studies.</td>
<td>Studies of the clinical presentation of this disorder are not well performed. Thought to involve aching pain in extensor/supinator area of forearm.
Physical exam findings are not well characterized for this disorder.
Pain on stressing extended middle finger
Maximum tenderness 4 finger breadths anterior and</td>
<td></td>
</tr>
<tr>
<td>Pronator Syndrome</td>
<td>Etiology unclear</td>
<td>Pain in proximal forearm with paraesthesias in median nerve distribution of hand</td>
<td>May be tender over pronator muscle</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Ulnar Nerve Entrapment (including Cubital Tunnel Syndrome)</td>
<td>Two main categories involving cubital tunnel and condylar groove</td>
<td>Paresthesias in the ring and 5th digits; generally spares dorsal surfaces</td>
<td>Paresthesias in ring and small fingers on 60-second elbow flexion test</td>
</tr>
<tr>
<td></td>
<td>Etiologies are unclear; there are no quality epidemiological studies</td>
<td>Pain may or may not be present</td>
<td>Subluxation of the ulnar nerve in the condylar groove sometimes present</td>
</tr>
<tr>
<td></td>
<td>Theorized mechanisms include hyperflexion of the elbow or prolonged leaning on the elbows for condylar groove segment neuropathies</td>
<td></td>
<td>Weakness/atrophy of ulnar hand intrinsics and interosseous muscles (unusual/late)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hoffman-Tinel's test over the condylar groove segment is thought to not be helpful as it is often abnormal in the absence of symptoms.</td>
</tr>
</tbody>
</table>

C.2.a Elbow Arthroscopy

Arthroscopy of the elbow has been used for diagnosis and treatment of some patients with elbow disorders, however, indications for either diagnostic or therapeutic procedures are not well defined with quality studies.

C.2.a.i Elbow Arthroscopy for Diagnosing Elbow Pain with Suspicion of Intraarticular Body and Other Subacute or Chronic Mechanical Symptoms
Recommended - to evaluate and diagnose patients with elbow pain that have suspicion of intraarticular body, and other subacute or chronic mechanical symptoms.

Indications – Patients with elbow pain with suspicion of intraarticular body, or other subacute or chronic mechanical symptoms.

C.2.a.ii **Arthroscopy for Diagnosing Acute Elbow Pain**

Not Recommended - for diagnosing acute elbow pain.

C.2.a.iii **Elbow Arthroscopy**

Recommended – for diagnosis or treatment of patients with osteoarthrosis in the presence of a remediable mechanical defect such as symptomatic loose body.

Not Recommended - for diagnosis or treatment of patients with osteoarthrosis in the absence of a remediable mechanical defect such as symptomatic loose body.

C.2.a.iv **Elbow Arthroscopy with Chondroplasty for Osteoarthrosis**

Not Recommended - for treatment of osteoarthrosis.

C.2.b Bone Scans

Bone scans involve intravenous administration of a radioactive tracer medication that is preferentially concentrated in areas of metabolic activity in bone. The radioactivity is then detected by a large sensor and converted into images of the skeleton. There are many causes for abnormal radioactive uptake, including metastases, infection, inflammatory arthropathies, fracture or other significant bone trauma. Thus, positive bone scans are not highly specific. Bone scans have been used for diagnosis of early osteonecrosis prior to findings on x-ray, among other uses.

C.2.b.i **Bone Scanning for Select Use in Acute, Subacute or Chronic Elbow Pain**

Recommended - for select use in acute, subacute or chronic elbow pain to assist in the diagnosis of osteonecrosis, neoplasms and other conditions with increased polyostotic bone metabolism, particularly where there is more than one joint to be evaluated.

Indications – Patients with elbow pain with suspicion of osteonecrosis, Paget’s disease, neoplasm or other increased polyostotic bone metabolism.

C.2.b.ii **Routine Use of Bone Scanning for Routine Elbow Joint Evaluations**

Not Recommended - for routine use in elbow joint evaluations.
Rationale for Recommendations - Bone scanning may be a helpful diagnostic test to evaluate suspected metastases, primary bone tumors, infected bone (osteomyelitis), inflammatory arthropathies, and trauma (e.g., occult fractures). It may be helpful in those with suspected, early AVN but without x-ray changes. In those where the diagnosis is felt to be secure, there is not an indication for bone scanning as it does not alter the treatment or management. It is generally thought to be inferior to MRI.

C.2.c Computerized Tomography

Computerized tomography remains an important imaging procedure, particularly for bony anatomy, whereas MRI is superior for soft tissue abnormalities. CT may be useful for elbow joint abnormalities where advanced imaging of the bones is required. CT may be helpful for evaluation of AVN and following traumatic dislocations or arthroplasty-associated recurrent dislocations. CT also may be useful to evaluate patients with contraindications for MRI (most typically an implanted metallic-ferrous device).

C.2.c.i Routine CT for Evaluating Acute, Subacute, Chronic Elbow Pain

Not Recommended - for evaluation of acute, subacute, or chronic elbow pain.

C.2.c.ii CT for Evaluating Patients with Osteonecrosis (AVN)

Recommended - for evaluating patients with osteonecrosis or following traumatic dislocations or arthroplasty-associated recurrent dislocations, or for patients who need advanced imaging but have contraindications for MRI.

Indications – Patients with elbow pain from osteonecrosis with suspicion of subchondral fracture(s), increased polyosthotic bone metabolism. As MRI is generally preferable, patients should have a contraindication for MRI. Patients who have traumatic elbow dislocations, particularly for capitular or trochlear fracture fragments.

C.2.c.iii Helical CT for Select Acute, Subacute, or Chronic Elbow Pain

Recommended - for select patients with acute, subacute, or chronic elbow pain in whom advanced imaging of bony structures is thought to be potentially helpful, and for patients with a need for advanced imaging but who have contraindications for MRI.

Indications – Patients with acute, subacute, or chronic elbow pain who need advanced bony structure imaging. Patients needing advanced imaging, but with contraindications for MRI (e.g., implanted hardware) are also candidates.
Rationale for Recommendations - Computerized tomography is considered superior to MRI for imaging of most elbow abnormalities where advanced imaging of calcified structures is required. Helical CT scan has been thought to be superior to MRI for evaluating subchondral fractures; however, a definitive study has not been reported.

C.2.d Electromyography and Nerve Conduction Studies (Electrodiagnostic Studies)

Electrodiagnostic (ED) studies have been used to confirm diagnostic impressions of other peripheral nerve entrapments, including all peripheral nerves in the upper extremity. They may be particularly helpful to distinguish a peripheral entrapment from cervical radiculopathy. NCS and EMG may be normal, particularly in some mild cases of neuropathies. If ED studies are negative, tests may be repeated later in the course of treatment if symptoms persist. It is also important to recognize that ED studies are abnormal in a considerable proportion of patients who are without symptoms. Thus, ED studies in a patient with a low pre-test probability of peripheral nerve entrapment may result in inappropriate diagnosis.

C.2.d.i Electromyography for Diagnosing Subacute or Chronic Peripheral Nerve Entrapments

Recommended - to assist in the diagnosis of subacute or chronic peripheral nerve entrapments, including ulnar neuropathies, radial neuropathies and median neuropathies.

Indications – Patients with subacute or chronic paresthesias with or without pain, particularly with unclear diagnosis. In addition to segmental analysis (e.g., above- versus below-elbow conduction), patients with peripheral neuropathies in the elbow region should generally have inching technique performed to localize the entrapment which assists with clinical management.

C.2.d.ii Electrodiagnostic Studies for Diagnosis and Pre-Operative Assessment of Peripheral Nerve Entrapments

Recommended - to assist in securing a firm diagnosis for those patients without a clear diagnosis. ED studies are also recommended as one of two methods to attempt to objectively secure a diagnosis prior to surgical release.

C.2.d.iii Electrodiagnostic Studies for Initial Evaluation of Patients Suspected of Having a Peripheral Nerve Entrapment

Not Recommended - for initial evaluation of most patients as it does not change the management of the condition.

Rationale for Recommendation - ED studies are primarily of assistance in: 1) identifying an anatomic location of nerve conduction slowing; 2) identifying objective evidence for alternate diagnostic considerations.
(e.g., cervical radiculopathy); and 3) quantifying nerve function to assure the physician that an operative state such as CTS is present. They are recommended for evaluation of select cases to assist in confirming peripheral nerve entrapments such as pronator syndrome, ulnar neuropathies at the elbow and radial neuropathies.

C.2.e Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) is considered the imaging test of choice for viewing soft tissues (including ligamentous injuries around the elbow). MRI is helpful for evaluating extent of biceps tendinosis and ruptures. MRI is considered the gold standard for evaluating osteonecrosis after x-rays. However, for most elbow disorders, MRI is not useful as an imaging procedure.

C.2.e.i MRI for Diagnosing Osteonecrosis (AVN)

Recommended - for diagnosing osteonecrosis and ligamentous elbow injuries.

Indications – Patients with subacute or chronic elbow pain thought to be related to osteonecrosis (AVN) or ligamentous elbow injuries, particularly in whom the diagnosis is unclear or who need additional diagnostic evaluation and staging.

C.2.e.ii MRI for Routine Evaluation of Acute, Subacute, Chronic Elbow Joint Pathology

Not Recommended - for routine evaluation of acute, subacute, or chronic elbow joint pathology, including degenerative joint disease.

Rationale for Recommendations - MRI is not recommended for routine elbow imaging, but is recommended for select elbow joint pathology particularly involving concerns regarding soft tissue pathology.

C.2.f Roentgenograms (X-RAYS)

X-rays show bony structure and remain the initial test for evaluation of most cases of elbow pain. Two or three views are generally performed.

C.2.f.i X-rays for Evaluation of Acute, Subacute, or Chronic Elbow Pain

Recommended - for evaluation of acute, subacute, or chronic elbow pain.

Indications – In the absence of red flags, patients with elbow pain lasting at least a few weeks, moderate to severe, and/or limited range of motion, or to evaluate for osteomyelitis in cases of significant septic olecranon bursitis.
Frequency/Duration – Obtaining x-rays once is generally sufficient. For patients with chronic or progressive elbow pain, it may be reasonable to obtain a second set of x-rays months to years subsequently to re-evaluate the patient's condition, particularly if symptoms change.

Rationale for Recommendations - X-rays are helpful to evaluate most patients with elbow pain, both to diagnose and to assist with the differential diagnostic possibilities.

C.2.g Single Proton Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET)

Single proton emission computed tomography (SPECT) is a 3-dimensional imaging technique in which radionucleotide tracers that release gamma radiation are used to create multiplanar re-formations.

C.2.g.i SPECT or PET for Diagnosing Acute, Subacute, or Chronic Elbow Pain

Not Recommended - for diagnosing acute, subacute, or chronic elbow pain.

Rationale for Recommendation - There is no quality evidence to support the use of these scans to evaluate patients with elbow pain.

C.2.h Ultrasound

C.2.h.i Diagnostic Ultrasound for Other Elbow Disorders, Including Osteonecrosis, Osteoarthrosis, Dysplasia and Fractures

Not Recommended - for the evaluation and diagnosis of other elbow disorders, including osteonecrosis, osteoarthrosis, dysplasia, and fractures.

C.2.i Laboratory Testing

Laboratory tests are rarely indicated at the time of initial evaluation, unless there is suspicion of systemic illness, infection, neoplasia, connective tissue disorder, or underlying arthritis or rheumatologic disorder based on history and/or physical examination. Tests include, but are not limited to:

C.2.i.i Antibodies

There are numerous antibodies that are markers for specific rheumatic diseases (e.g., rheumatoid factor, anti-nuclear antibodies, anti-Sm, anti-Ro, anti-La for rheumatoid arthritis, systemic lupus erythematosus, Sjogren's, mixed connective tissue disorder, etc.). Patients with rheumatic disorders are at increased risk for degenerative joint disease of the elbow.

C.2.i.ii Antibodies for Diagnosing Elbow Pain with Suspicion of Chronic or Recurrent Rheumatological Disorder
Recommended - to evaluate and diagnose patients with elbow pain who have reasonable suspicion of rheumatological disorder.

Indications – Patients with elbow pain with suspicion of rheumatological disorder.

C.2.i.iii **Antibodies to Confirm Specific Disorders**

Recommended - as a screen to confirm specific disorders (e.g., rheumatoid arthritis).

Indications – Patients with elbow pain and a presumptive diagnosis of a rheumatological disorder.

Rationale for Recommendations - Elevated antibody levels are highly useful for confirmation of clinical impressions of rheumatic diseases. However, routine use of these tests in patients with elbow pain – especially as wide-ranging, non-focused test batteries – are likely to result in inaccurate diagnoses due to false positives and low pre-test probabilities and are not recommended. Providers should also be aware that false negative results occur. They are recommended for focused testing of a limited number of diagnostic considerations.

C.2.i.iv **C-Reactive Protein, Erythrocyte Sedimentation Rate, and Other Non Specific Inflammatory Markers**

There are many markers of inflammation that may be measured serologically. These include C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), ferritin, and an elevated total protein-albumin gap.

Non-Specific Inflammatory Markers for Screening for Inflammatory Disorders in Patients with Subacute or Chronic Elbow Pain

Recommended - for screening for inflammatory disorders or prosthetic sepsis with reasonable suspicion of inflammatory disorder in patients with subacute or chronic elbow pain.

Indications – Patients with elbow pain with suspicion of rheumatological disorder.

Rationale for Recommendation - Erythrocyte sedimentation rate is the most commonly used systemic marker for non-specific inflammation and is elevated in numerous inflammatory conditions including rheumatological disorders, as well as with infectious diseases. C-reactive protein is a marker of systemic inflammation that has been associated with an increased risk of coronary artery disease. However, it is also a non-specific marker for other inflammation. Other non-specific markers of inflammation include ferritin, and an elevated protein-albumin gap, which have no known clinical roles. They are recommended as a reasonable screen for systemic inflammatory conditions especially if the
elbow pain patient also has other pains without clear definition of a diagnosis or those with fibromyalgia or myofascial pain syndrome, although the specificity is not high. However, ordering of a large, diverse array of anti-inflammatory markers without targeting a few specific disorders diagnostically is not recommended.

D. Conditions

This guideline addresses the following elbow related work conditions.

D.1 Contusions
D.2 Lateral Epicondylalgia
D.3 Olecranon Bursitis
D.4 Elbow Fractures, Including Non-Displaced Radial Head Fractures
D.5 Elbow Dislocations
D.6 Elbow Lacerations
D.7 Elbow Sprains
D.8 Biceps Tendinosis (or Tendinitis) and Tears/Ruptures
D.9 Triceps Tendinosis (or Tendinitis) and Tears/Ruptures
D.10 Ulnar Neuropathies at the Elbow; Including Gondylar Grove Associated Unlar Neuropathy and Cubital Tunnel Syndrome
D.11 Radial Nerve Entrapment (Including Radial Tunnel Syndrome)
D.12 Pronator Syndrome (Median Neuropathies in the Forearm)
D.1 Contusions
A contusion is an injury of a part without a break in the skin and with a subcutaneous hemorrhage. It is an acute injury with bruising.

D.1.a Medications

D.1.a.i NSAIDs, Acetaminophen, Ice, Compression, and Range-of-Motion Exercises for Contusions

Recommended - for elbow contusions.

D.1.b Treatment

D.1.b.i Immobilization for Elbow Contusions

Not Recommended - for elbow contusions.

Rationale for Recommendation - Medical management of contusions is recommended to be directed at maintaining normal elbow function. Accordingly, treatment should include anti-inflammatory medications with avoidance of immobilization. Early mobilization should also be encouraged. Medical management can be summarized as rest, ice, compression, elevation, and range-of-motion exercises.

D.2 Lateral Epicondylitis (Epicondylalgia)

D.2.a Lateral Epicondylitis; Tennis Elbow

D.2.a.i Lateral Epicondylitis Diagnostic Criteria
Lateral epicondylitis (Tennis Elbow) causes soreness or pain on the outside (lateral) side of the upper arm near the elbow. Lateral epicondylitis is diagnosed based on a combination of lateral elbow pain plus tenderness to palpation over the lateral epicondyle or tenderness within a couple centimeters distal to the epicondyle. Most patients require no special testing provided red flags are absent. For patients who have been treated for at least four weeks and symptoms have failed to improve, additional testing may be required.

Patients should not have other potential explanatory conditions such as cervical radiculopathy (especially C-6), elbow arthrosis or fibromyalgia. Some patients will have onset after a traumatic event, usually a relatively mild accident such as bumping the elbow on a hard surface; however, this is not required to make a diagnosis.

D.2.b Medial Epicondylitis; Golfer’s Elbow

D.2.b.i Medial Epicondylitis Diagnostic Criteria
Medial epicondylitis is substantially less common affecting the medial or inner aspect of the elbow. Medial epicondylalgia is sometimes thought to occur concomitantly with ulnar neuropathy at the elbow. Treatment of medial epicondylitis is analogous to lateral epicondylitis.

Evidence for Medial Epicondylalgia

D.2.c **Special Studies and Diagnostic and Treatment Considerations**

Most patients require no special testing provided red flags are absent. For patients who have been treated for at least four weeks and symptoms have failed to improve, additional testing may be required. Some patients require testing to eliminate alternate diagnostic possibilities such as C-6 cervical radiculopathy (typically with MRI), or arthrosis (x-ray of the elbow). EMG may be used for cervical radiculopathy but is recommended at least 6 weeks after symptom onset to allow sufficient time for EMG changes to be manifest (require three weeks minimum).

D.2.d **Medications**

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

D.2.d.i **Non-Steroidal Anti-inflammatory Drugs (NSAIDs)**

NSAIDs for Treatment of Acute, Subacute, Chronic, or Post-operative Epicondylalgia

Recommended - for treatment of acute, subacute, chronic, or post-operative epicondylalgia.

Indications – For acute, subacute, chronic, or post-operative epicondylalgia, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration – As needed use may be reasonable for many patients.

Indications for Discontinuation – Resolution of elbow pain, lack of efficacy, or development of adverse effects that necessitate discontinuation.

D.2.d.ii **NSAIDs for Patients at High Risk of Gastrointestinal Bleeding.**

Recommended – concomitant use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.
Indications – For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration – Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation – Intolerance, development of adverse effects, or discontinuation of NSAID.

D.2.d.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects
Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

Recommended - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

D.2.d.iv Acetaminophen for Treatment of Elbow Pain

Recommended - for treatment of elbow pain, particularly in patients with contraindications for NSAIDs.

Indications – All patients with elbow pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency – Per manufacturer’s recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation – Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs for Lateral Epicondylalgia

D.2.d.v Topical NSAIDs

Topical NSAIDs for Treatment of Acute, Subacute, Chronic, or Post-Operative Epicondylalgia
Recommended - for acute, subacute, chronic, or post-operative lateral epicondylalgia.

Indications – For most patients, oral medications are recommended. However, for those with contraindications for oral NSAIDs or intolerance, topical NSAIDs may be a reasonable alternative.

Frequency/Dose/Duration – Per manufacturer’s recommendations.

Indications for Discontinuation – Resolution of elbow pain, lack of efficacy, or development of adverse effects that necessitate discontinuation.

Evidence for the Use of Topical NSAIDs and Other Agents for Lateral Epicondylalgia

D.2.d.vi Opioids

Opioids are rarely used for treatment of patients with epicondylalgia. They are more frequently used briefly in the immediate post-operative period.

D.2.d.vi.a Opioids for Select Patients with Post-Operative Epicondylalgia

Recommended - for select treatment of patients with post-operative epicondylalgia.

Indications – For post-operative epicondylalgia, a brief course of a few days to not more than one week of an opioid is recommended for treatment. Opioids may be helpful for brief nocturnal use after surgery. For other epicondylalgia patients, opioids are not recommended. Most patients should attempt pain control with NSAIDs/acetaminophen prior to opioids. Discontinuation of opioids as early as possible is recommended.

Frequency/Dose/Duration – Generally, patients require no more than a few days to not more than one week, of treatment with opioids for most epicondylar surgeries.

Indications for Discontinuation – Resolution of elbow pain, sufficient control with other medications, lack of efficacy, or development of adverse effects that necessitate discontinuation.

D.2.d.vi.b Opioids for Acute, Subacute, or Chronic Epicondylalgia

Not Recommended - for acute, subacute, or chronic epicondylalgia.
Rationale for Recommendations - There are no quality studies evaluating opioids for treating epicondylalgia. Opioids cause significant adverse effects – poor tolerance, constipation, drowsiness, clouded judgment, memory loss, and potential misuse or dependence have been reported in up to 35% of patients. Before prescribing opioids, patients should be informed of these potential adverse effects and cautioned against operating motor vehicles or machinery. Opioids do not appear to be more effective than safer analgesics for managing most musculoskeletal symptoms; they should only be used if needed for severe pain or for a short time (not more than one week) in the post-operative time. Opioids are not recommended for treatment of epicondylalgia patients, except as a brief post-operative course.

Evidence for Use of Opioids for Lateral Epicondylalgia

D.2.e Rehabilitation: Devices / Therapy

Rehabilitation required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient’s daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the individual to complete a specific exercise or task. This form of therapy requires supervision from a therapist such as verbal, visual and/or tactile instruction(s). At times, the therapist may help stabilize the patient or guide the movement pattern, but the energy required to complete the task is predominately executed by the patient. Patient should be instructed to continue active therapies at home as an extension of the treatment process in order to maintain improvement levels.

Active interventions should be emphasized over passive interventions. Passive interventions, those not requiring the exertion of effort on the part of the patient, but rather dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains.

Assistive devices maybe included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

Devices

D.2.e.i Tennis Elbow Bands, Straps, and Braces for Acute, Subacute, and Chronic Epicondylalgia

Recommended - for the treatment of acute, subacute, or chronic epicondylalgia.
Frequency/Dose/Duration – Devices generally worn daily, but not at night, or as-needed for more forceful exertions (discontinue for less forceful activities during daily routine).

Indications for Discontinuation – Resolution of elbow pain, intolerance, lack of efficacy, or pain radiating down the dorsum of the forearm into the hand and/or numbness of the dorsum of the hand.

D.2.e.ii Cock-up Wrist Braces for Acute, Subacute, or Chronic Epicondylalgia

Recommended - for the treatment of acute, subacute, or chronic epicondylalgia.

Indications – Acute, subacute, or chronic epicondylalgia. Generally, elbow bands and straps are recommended first, with wrist braces as possible adjunctive treatment for either more severe cases and/or suboptimal results with elbow bands and straps.

Frequency/Dose/Duration – Devices generally worn daily (not at night), or as-needed for more forceful exertions (discontinue for less forceful activities during daily routine).

Indications for Discontinuation – Resolution of elbow pain, intolerance or lack of efficacy.

Evidence for the Use of Epicondylalgia Supports

Therapy (Active and Passive)

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient’s daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

Active Therapy
Therapeutic Exercise - Physical / Occupational Therapy

Physical or Occupational Therapy for Acute, Subacute, Chronic, or Post-operative Epicondylalgia

Recommended - for the treatment of acute, subacute, chronic, or post-operative epicondylalgia.

Frequency/Dose/Duration – Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

Indications for Discontinuation – Resolution of elbow pain, intolerance, lack of efficacy or non-compliance including non-compliance with home exercises prescribed.

Evidence for Exercise Programs for Lateral Epicondylalgia

Passive Therapy

Heat or Cold Packs

Self-application of Heat or Cold for Acute, Subacute, Chronic, or Post-operative Epicondylalgia

Recommended - for the treatment of acute, subacute, chronic, or post-operative epicondylalgia.

Frequency/Dose/Duration – Heat or cold may be reasonable treatments as self applications, approximately three to five times a day.

Indications for Discontinuation – Resolution of elbow pain, intolerance or lack of efficacy.

Evidence for the Use of Heat or Cold Packs for Lateral Epicondylalgia

Iontophoresis

Iontophoresis with administration of either glucocorticosteroids or NSAIDs for Acute, Subacute, or Chronic Epicondylalgia

Recommended - for the treatment of acute, subacute, or chronic epicondylalgia.
Indications – For acute, subacute, or chronic epicondylalgia patients; patients who cannot tolerate oral NSAIDs; or patients who fail other treatments (e.g., insufficient pain relief with elbow straps and activity modification) may be ideal candidates. Generally, moderately to severely affected patients are thought to be better candidates.

Frequency/Dose/Duration – Various medications have been used in the quality studies. These include dexamethasone, naproxen, and ketorolac.

Indications for Discontinuation – Resolution of pain, intolerance, lack of efficacy or non-compliance.

Evidence for the Use of Iontophoresis for Lateral Epicondylalgia

D.2.e.vi Ultrasound
Ultrasound for Acute, Subacute, or Chronic Epicondylalgia

Recommended - for the treatment of acute, subacute, or chronic epicondylalgia.

Indications – For acute, subacute, or chronic epicondylalgia patients; patients who cannot tolerate oral NSAIDs and exercise; or patients who fail other treatments (e.g., insufficient pain relief with elbow straps and activity modification) may be ideal candidates. Generally, moderately to severely affected patients are thought to be better candidates. Overall effect of ultrasound appears modest, thus other interventions are recommended first, particularly exercise.

Frequency/Dose/Duration – Various regimens have been utilized in the quality studies. The two trials showing the most benefit utilized 10 to 12 treatments over four to six weeks.

Indications for Discontinuation – Resolution of pain, intolerance, lack of efficacy or non-compliance.

Evidence for the Use of Ultrasound for Lateral Epicondylalgia

Other Therapies

D.2.e.vii Manipulation and Mobilization

D.2.e.vii.a Soft Tissue Mobilization for Acute, Subacute, or Chronic Epicondylalgia

Not Recommended - for the treatment of acute, subacute, or chronic epicondylalgia.

D.2.e.vii.b Manipulation and Mobilization for Acute, Subacute, or Chronic Epicondylalgia
Not Recommended - for the treatment of acute, subacute, or chronic epicondylalgia.

Evidence for the Use of Manipulation and Mobilization for Lateral Epicondylalgia

D.2.e.viii Massage, Including Friction Massage, for Acute, Subacute, or Chronic Epicondylalgia

Not Recommended: Massage, including friction massage,

Evidence for the Use of Massage and Friction Massage for Epicondylalgia

D.2.e.ix Magnets and Pulsed Electromagnetic Field for Acute, Subacute, or Chronic Epicondylalgia

Not Recommended - for the treatment of acute, subacute, or chronic epicondylalgia.

Evidence for the Use of Magnets for Lateral Epicondylalgia

D.2.e.x Extracorporeal Shockwave Therapy for Acute, Subacute, or Chronic Epicondylalgia

Not Recommended - for the treatment of acute, subacute, or chronic epicondylalgia.

Evidence for the Use of Extracorporeal Shockwave Therapy for Lateral Epicondylalgia

D.2.e.xi Phonophoresis for Acute, Subacute, or Chronic Epicondylalgia

Not Recommended - for the treatment of acute, subacute, or chronic epicondylalgia.

Evidence for the Use of Phonophoresis for Lateral Epicondylalgia

D.2.e.xii Low-Level Laser Therapy for Acute, Subacute, or Chronic Epicondylalgia

Not Recommended - for the treatment of acute, subacute, or chronic epicondylalgia.

Evidence for the Use of Low-Level Laser Therapy for Lateral Epicondylalgia

D.2.e.xiii Acupuncture

D.2.e.xiii.a Acupuncture for Select Chronic Epicondylalgia
Recommended - for the treatment of select patients with chronic epicondylalgia.

Indications – Chronic epicondylalgia patients; patients who fail to sufficiently respond to treatment with NSAIDs (oral and/or topical), exercise, or patients who fail other treatments (e.g., insufficient pain relief with elbow straps and activity modification) may be ideal candidates. Glucocorticosteroid injections are also reasonable intervention(s) to attempt before acupuncture. Generally, moderately to severely affected patients are thought to be better candidates. Overall benefits of acupuncture appear modest and efficacy appears to be transient, disappearing after a few weeks.

Frequency/Dose/Duration – Regimens were two to three treatments a week for eight to ten treatments. Patients should demonstrate benefit after four to five visits otherwise either the technique should be altered or acupuncture discontinued.

Indications for Discontinuation – Resolution of pain, intolerance, lack of efficacy, or non-compliance.

D.2.e.xiii.b Acupuncture for Acute, Subacute, or Post-Operative Epicondylalgia

Not Recommended - for the treatment of acute, subacute, or post-operative epicondylalgia.

Evidence for the Use of Acupuncture for Lateral Epicondylalgia

D.2.e.xiv Biofeedback, Electrical Nerve Stimulation, and Diathermy for Acute, Subacute, or Chronic Epicondylalgia

Not Recommended - for the treatment of acute, subacute, or chronic epicondylalgia.

Evidence for Biofeedback, Transcutaneous Electrical Nerve Stimulation, Electrical Stimulation, and Diathermy for Lateral Epicondylalgia

D.2.f Injections

D.2.f.i Glucocorticosteroid Injections

D.2.f.i.a Glucocorticosteroid Injections for Subacute or Chronic Epicondylalgia

Recommended - for the treatment of highly selective subacute or chronic epicondylalgia.
Indications – Subacute or chronic epicondylalgia patients. Patients should have failed to respond sufficiently to treatment with multiple different NSAIDs (oral and/or topical), exercise, elbow straps and activity modification. Patients should be cautioned the symptoms frequently recur after injection. Moderately to severely affected patients are thought to be better candidates, particularly those thought to be surgical candidates who are attempting to delay surgery in the hopes that the pain subsides.

Frequency/Dose/Duration – All quality trials have performed one injection and assessed the results for a positive outcome prior to performing additional injections. There also is some preliminary evidence that either dry needling or a multiple puncture technique (“peppering”) may be effective, although none with a true control group for the technique (Stenhouse 13; Uygur 2017; Krogh 13; Altay 02; Dogramaci 2009).

Indications for Discontinuation – Resolution of pain, intolerance, lack of efficacy or non-compliance. Lack of response should result in reassessment of the diagnosis.

D.2.f.i.b Glucocorticosteroid Injections for Acute Epicondylalgia

Not Recommended - for the treatment of acute epicondylalgia.

D.2.f.i.c Glucocorticosteroid Injections Using Bupivacaine for Subacute or Chronic Epicondylalgia

Recommended - as an adjunct for the treatment of subacute or chronic epicondylalgia.

Evidence for the Use of Glucocorticosteroid Injections for Lateral Epicondylalgia

D.2.f.ii Botulinum Injections for Acute, Subacute, or Chronic Lateral Epicondylalgia

Not Recommended - for the treatment of acute, subacute, or chronic lateral epicondylalgia.

Evidence for Use of Botulinum Injections for Lateral Epicondylalgia

D.2.f.iii Platlet Rich Plasma Injections and Autologous Blood Injections

Recommended - for Chronic Lateral Epicondylalgia
Indications – Lateral epicondylalgia lasting at least 6 months, unresponsive to other treatments including NSAID(s), straps, stretching and strengthening exercises, and at least one glucocorticosteroids injection.

Dose/Frequency – One Injection of approximately 3mL of platelet-rich plasma buffered with NS plus 8.4% sodium bicarbonate plus bupivacaine 0.5% with epinephrine (1:200,000).

D.2.f.iv Autogolous Blood Injections

Recommended - for Chronic Lateral Epicondylalgia

Indications – Lateral epicondylalgia lasting at least 6 months, unresponsive to other treatments including NSAID(s), straps, stretching and strengthening exercises, and at least one glucocorticosteroids injection.

Dose/Frequency – Withdrawal of 2mL of autologous blood from a peripheral vein, then injected into the most tender location(s).

D.2.f.v Platelet-rich Plasma or Autologous Blood Injections for Acute or Subacute Epicondylalgia

Not Recommended - for the treatment of acute or subacute epicondylalgia.

Evidence for the Use of Platelet-rich Plasma and Autologous Blood Injections for Epicondylalgia

D.2.f[vi] Polidocanol Injections for Acute, Subacute, or Chronic Epicondylalgia

Not Recommended - for the treatment of acute, subacute, or chronic epicondylalgia.

Evidence for Use of Polidocanol Injections for Epicondylalgia

D.2.f.vii Periarticular Viscosupplementation (Hyaluronate and Glycosaminoglycan) Injections for Chronic Epicondylalgia

Not Recommended - for the treatment of chronic epicondylalgia.

Evidence for the Use of Periarticular Viscosupplementation Injections

D.2.f.viii Other Injections

D.2.f.viii.a Prolotherapy or Sonographically Guided Percutaneous Tenotomy Injections for Acute, Subacute, or Chronic Epicondylalgia
Not Recommended - for the treatment of acute, subacute, or chronic epicondylalgia.

D.2.f.viii.b Dry Needling or Multi Puncture Technique (‘peppering’) May Be Effective for Treatment of Subacute or Chronic Epicondylalgia

Recommended – for the treatment of subacute or chronic epicondylalgia

Rationale for Recommendations – There is some preliminary evidence that either dry needling or multiple puncture technique (‘peppering’) may be effective.

D.2.g Surgical Considerations

Surgery has been used to treat lateral epicondylalgia that does not respond to adequate trials of nonoperative care. There are three main surgical approaches for lateral epicondylalgia – open, percutaneous, and arthroscopic. One review found no evidence of the superiority of one approach over another and concluded that the choice should be left to the individual surgeon.

D.2.g.i Lateral Epicondylar Release for Chronic Lateral Epicondylalgia

Recommended - for the treatment of chronic lateral epicondylalgia.

Indications – The timing of surgery should be consistent with the degree of functional impairment and the progression and severity of objective findings. In contrast with severe entrapment neuropathies, lateral epicondylalgia does not generally produce unequivocally objective evidence of impairment or severe dysfunction, thus documentation of adequate trials of non-operative management in spite of compliance with treatment is particularly important. Patients should generally have pain for at least 6 months, although there are some limited exceptions where as little as 3 months of non-operative management may be sufficient. There should generally be significant limitations, failure to improve with NSAIDs, elbow bands/straps, activity modification, and exercise programs to increase range of motion and strength of the musculature around the elbow. Patients should generally have failed glucocorticosteroid injection(s), ideally with documented short-term relief of injection(s). Any of the three main surgical approaches are acceptable.

D.2.g.ii Radiofrequency Microtenotomy for Chronic Lateral Epicondylalgia

Recommended - for the treatment of chronic lateral epicondylalgia.

Indications – Same as above.

Evidence for the Use of Surgical Interventions for Epicondylalgia
D.3 Olecranon Bursitis

D.3.a Diagnostic Criteria

Olecranon bursitis is a condition associated with a generally painless effusion of the olecranon bursa. Acute olecranon bursitis may be slightly warm but is generally non-tender or minimally tender. Septic (infected) olecranon bursitis is either a complication of aseptic olecranon bursitis or a direct consequence of trauma. Generally, to be a complication of aseptic olecranon, bursitis also requires introduction of organisms through the skin, such as abraded skin or an injection, although systemic seeding may also occur. Signs include swelling, pain, tenderness, and pain on range of motion. Bursitis due to crystal arthropathies also tend to present with findings similar to those of septic bursitis.

D.3.b Special Studies and Diagnostic and Treatment Considerations

There are no special studies for most cases of olecranon bursitis. If the bursa is thought to be potentially infected, aspiration of the fluid and analyses including Gram stain and culture and sensitivity are recommended.

D.3.b.i Fluid Aspiration of Swollen Bursa and Analyses for Olecranon Bursitis

Recommended – for a clinically infected or questionably infected bursa, including Gram stain, culture and sensitivity, and complete cell count, to determine infection for olecranon bursitis. Crystal examination (light polarizing microscopy) should also be performed at least once on the aspirated fluid.

Rationale for Recommendation - Aspiration has been used for diagnosis, particularly when combined with Gram stain, culture and sensitivity, and complete cell count of the aspirated fluid are performed. Crystal examination (light polarizing microscopy) should also be performed at least once on the aspirated fluid.

Evidence for the Use of Aspiration

D.3.b.ii X-Rays for Olecranon Bursitis

Recommended - to rule out osteomyelitis or joint effusion in cases of significant septic olecranon bursitis.

D.3.c Initial Care

Most patients with olecranon bursitis are treated with soft elbow padding, support or an ace wrap, are instructed to avoid elbow pressure, and require no further care other than monitoring to assure resolution.

D.3.c.i Soft Padding, Soft Elbow Supports, and Ace Wraps for Olecranon Bursitis
D.3.c.ii Modifying Activities to Avoid Direct Pressure Over the Olecranon

Recommended - allowing time to reabsorb the fluid are recommended.

D.3.d Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

D.3.d.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs)

NSAIDs for Treatment of Acute, Subacute, Chronic, or Post-operative Olecranon Bursitis

Recommended - for treatment of acute, subacute, chronic, or post-operative Olecranon Bursitis.

Indications – For acute, subacute, chronic, or post-operative Olecranon Bursitis, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration – As needed use may be reasonable for many patients.

Indications for Discontinuation – Resolution of elbow pain, lack of efficacy, or development of adverse effects that necessitate discontinuation.

D.3.d.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding.

Recommended – concomitant use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications – For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration – Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per
manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation – Intolerance, development of adverse effects, or discontinuation of NSAID.

D.3.d.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

Recommended - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or eight hours before the daily aspirin.

D.3.d.iv Acetaminophen for Treatment of Elbow Pain

Recommended - for treatment of elbow pain, particularly in patients with contraindications for NSAIDs.

Indications – All patients with elbow pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency – Per manufacturer’s recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation – Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs for Olecranon Bursitis

D.3.e Injection Therapies

Glucocorticosteroid Injections for Olecranon Bursitis

Not Recommended - for the treatment of olecranon bursitis.

Evidence for the Use of Glucocorticosteroid Injections for Olecranon Bursitis

D.3.f Surgical Considerations

Surgery has been widely used to treat olecranon bursitis that has not responded to activity modifications and injections.

D.3.f.i Surgical Drainage for Olecranon Bursitis
Recommended - for treatment of olecranon bursitis.

Indications – Olecranon bursitis that is either infected, clinically thought to be infected, or not infected but present for at least approximately six to eight weeks without trending towards resolution while being treated with soft padding and activity modifications above.

D.3.f.ii Surgical Resection for Chronic Olecranon Bursitis

Recommended - for chronic olecranon bursitis with recurrent drainage.

Indications – Olecranon bursitis with recurrent drainage.

D.4 Elbow Fractures, including Non-Displaced Radial Head Fractures

Elbow fractures most commonly occur from falls. Radial head fractures typically occur from falls onto an outstretched hand. If the fracture is large and displaced or comminuted (Type III) or there is a large fracture with a displaced fragment (Type II), surgical referral is indicated. Capitellar fractures are rare and usually occur from falling on an outstretched hand. Non-operative management is sometimes attempted; however, most are believed to require surgical fixation. Surgical repairs are often performed for these fractures.

D.4.a Diagnostic Criteria

A clinical impression is made upon history of appropriate injury mechanism and physical examination findings of substantial tenderness particularly focally over a bone. Findings of (in)ability to use the elbow should be sought, as well as inspection for signs of deformity. A fracture identified on x-rays, generally two or three views, confirms that diagnostic impression. The differential diagnosis prominently includes elbow sprain and dislocation. If x-rays are negative and clinical suspicion high, a CT is usually the next test.

D.4.b Special Studies and Diagnostic and Treatment Considerations

X-rays for Elbow Fracture

Recommended - X-rays that include at least two to three views are recommended to diagnose elbow fractures.

D.4.c Initial Care

Cast Immobilization/Splints and Slings

Casting has been long used to treat elbow and other fractures. Non-displaced radial head fractures have been treated with slings.

D.4.c.i Elbow Slings for Non-displaced and Occult Radial Head Fractures
Recommended - for treatment of non-displaced and occult radial head fractures.

Indications – Non-displaced radial head fractures and occult fractures. Occult fractures are not visible on x-rays but are suspected by including either the lack of full extension of the elbow or evidence of effusion on x-ray.

Frequency/Duration – Sling (or splint) use for non-displaced radial head fractures is for seven days. (A shorter complete immobilization period of as little as three days may be used for non-displaced fractures that are clinically present but not visible on an x-ray.) After seven days, gentle range-of-motion exercises within pain tolerance should begin, followed by progressive mobilization.

D.4.c.ii Casts and Cast Bracing for Select Elbow Fractures

Recommended - for treatment of non-displaced or occult radial head fractures.

Indications – Minimally displaced fractures and other elbow fractures felt amenable to casting, cast bracing, or post-open reduction internal fixation fractures.

Frequency/Duration – Casts are generally required for six weeks or until adequate healing is documented on x-ray. After successful healing, they should be followed by progressive mobilization.

Evidence for the Use of Immobilization for Elbow Fractures

D.4.d Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

D.4.d.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, Chronic, or Post-Operative Elbow Fractures

Recommended - for treatment of acute, subacute, chronic, or post-operative Elbow Fractures.

Indications – For acute, subacute, chronic, or post-operative Elbow Fractures, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.
Frequency/Duration – There is no quality evidence one NSAID is superior to another for these indications. As needed use may be reasonable for many patients.

Indications for Discontinuation – Resolution of elbow pain, lack of efficacy, or development of adverse effects that necessitate discontinuation.

D.4.d.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding.

Recommended – concurrent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications – For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration – Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation – Intolerance, development of adverse effects, or discontinuation of NSAID.

D.4.d.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

Recommended - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or eight hours before the daily aspirin.

D.4.d.iv Acetaminophen for Treatment of Elbow Pain

Recommended - for treatment of elbow pain, particularly in patients with contraindications for NSAIDs.

Indications – All patients with elbow pain, including acute, subacute, chronic, and post-operative.
D.4.d.v Opioids for Select Patients with Pain from Elbow Fractures

Recommended - for treatment of select patients with pain from elbow fractures.

Indications – Select patients with severe pain from elbow fracture with insufficient control from other means, including acetaminophen and NSAIDs or with contraindications for NSAIDs. Patients with more severe fractures or in the immediate post-operative period may require opioids for pain management. Considerable cautions are recommended concerning opioids and minimum numbers of doses should be prescribed as duration of treatment for elbow fractures is usually limited.

Frequency/Dose – As needed. For the few patients requiring opioids, the majority need at most a few days treatment to not more than one week and then generally have insufficient pain for further treatment with opioids.

Indications for Discontinuation – Resolution of pain sufficiently to not require opioids, consumption that does not follow prescription instructions, adverse effects.

Evidence for the Use of Opioids for Elbow Fractures

D.4.e Surgery

Displaced fractures and fracture fragments are believed to require surgical treatment with fixation, but there are no quality studies of displaced fractures. Widely displaced fracture and/or comminuted fragments may require radial head excision and/or radial head implant. Indications to surgically fix elbow fractures are not well defined, and there is a suggestion that some patients are better candidates than others (e.g., widely displaced fragments, or requirement for earlier recovery such as in professional athletes, terrible triad patients). The decision to surgically treat elbow fractures is a decision between the orthopedist and patient.

Surgical Fixation of Displaced Elbow Fractures

Recommended - Surgical fixation is recommended for displaced elbow fractures.

Evidence for the Use of Surgery for Elbow Fractures

D.4.f Therapeutic Exercise (Active and Passive)
Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient’s daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

D.4.f.i Physical or Occupational Therapy of Patients After Cast Removal

Recommended – after case removal.

Frequency/Dose/Duration – Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

Indications for Discontinuation – Resolution of elbow pain, intolerance, lack of efficacy or non-compliance including non-compliance with home exercises prescribed.

D.5 Elbow Dislocations

Dislocation of the elbow generally occurs as a result of significant, high-force trauma, and only dislocation of the shoulder is more common clinically. The most common mechanism is falling onto an outstretched hand, resulting in a posterior dislocation (98% of cases). Severe pain and inability to use the elbow and hand are typical presenting complaints. Accompanying fractures and vascular and neurological problems are common, and a combination of fracture and dislocation is called complex or complex instability. Radial
head fractures are present approximately 10% of the time. A combination of dislocation, radial head and ulnar coronoid process fractures is called the terrible triad injury.

D.5.a Diagnostic Criteria

Dislocations are diagnosed based on a combination of typical inciting event (usually fall or trauma) combined with deformity and inability to use the arm. Persistent dislocation involves a complete inability to use the arm and deformity.

D.5.b Special Studies and Diagnostic and Treatment Considerations

X-Rays

Recommended - at least two to three views for elbow dislocation to rule-out fractures. Repeat x-rays after reduction are also recommended.

D.5.c Initial Care

There are no quality studies for evaluation or treatment of dislocated elbows. An evaluation of the motor, sensory, and vascular system is required to rule-out accompanying injuries. Medical management of the dislocated elbow should include an x-ray to assure that there is no fracture. If the elbow remains dislocated, it should be reduced as soon as possible by a health care professional experienced in joint relocation. Injection of an anesthetic into the swollen joint space may help. The longer the elbow remains dislocated, the higher the probability that general anesthesia will be required to successfully reduce the elbow. Post-reduction x-rays are necessary, as well as an exam to be sure that the reduction is successful and that there is no loose body present. A posterior splint is to be applied for 10 days. Range-of-motion exercises are recommended after immobilization. Range-of-motion exercises should primarily involve the elbow but should also include the shoulder (to prevent frozen shoulder), and the wrist.

D.5.c.i General Anesthesia to Facilitate Reduction in Select Patients

Recommended - to facilitate reduction in select patients.

Indications – Failure to obtain reduction, generally including use of intraarticular anesthetic injection.

Rationale for Recommendation - Most patients do not require general anesthesia to obtain sufficient muscular relaxation for reduction. In cases where reduction is not obtained and intraarticular injection with anesthetics is insufficient to obtain reduction, general anesthesia is used and is therefore recommended when other measures fail.

D.5.d Monitoring Progress

Patients should be re-evaluated seven to ten days after reduction. Range-of-motion exercises should be progressed at that point. If there is failure to progress, additional testing is indicated, including for ruling out fracture.
D.5.e Activity Modification and Exercise

Most patients with a dislocated elbow are treated with a posterior splint after reduction. They usually are instructed to perform gentle range of motion exercises a few times a day to prevent prolonged rehabilitation to regain normal range of motion after the splint is removed. In addition, interventions are provided to address modifications to performance of ADLs and IADLs.

D.5.f Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

D.5.f.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs)

NSAIDs for Treatment of Elbow Dislocation or Post-Operative Elbow Reduction

Recommended - for treatment of Elbow Dislocation, or post-operative Elbow Reduction.

Indications – For Elbow Dislocation, or post-operative Elbow Reduction, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration – As needed use may be reasonable for many patients.

Indications for Discontinuation – Resolution of elbow pain, lack of efficacy, or development of adverse effects that necessitate discontinuation.

D.5.f.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding.

Recommended – concomitant use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications – For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration – Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.
Indications for Discontinuation – Intolerance, development of adverse effects, or discontinuation of NSAID.

D.5.f.iii NSAIDS for Patients at Risk for Cardiovascular Adverse Effects
Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

Recommended - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or eight hours before the daily aspirin.

D.5.f.iv Acetaminophen for Treatment of Elbow Pain

Recommended - for treatment of elbow pain, particularly in patients with contraindications for NSAIDs.

Indications – All patients with elbow pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency – Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation – Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs and Acetaminophen for Elbow Dislocation

D.5.f.v Opioids

Recommended - for treatment of select patients with pain from elbow dislocations.

Indications – Select patients with severe pain from elbow dislocation with insufficient control from other means, including acetaminophen and NSAIDs or with contraindications for NSAIDs. Considerable cautions are recommended concerning opioids and minimum numbers of doses should be prescribed as duration of treatment for elbow dislocations is usually quite limited.

Frequency/Dose – As needed dosing. Among the few patients requiring opioids, most require at most a few days to not more than one week of
treatment and then generally have insufficient pain for further treatment with opioids.

Indications for Discontinuation – Resolution of pain sufficiently to not require opioids, consumption that does not follow prescription instructions, adverse effects.

Rationale for Recommendation - Most patients do not require opioids. Some patients, particularly with more severe dislocations may require opioids.

Evidence for the Use of Opioids for Elbow Dislocation

D.5.f.vi Anesthetic Intraarticular Injections for Pre- or Post-Reduction Pain

Recommended - either pre-reduction or post-reduction for pain management.

Indications – Either pre-reduction to assist with pain control and facilitate reduction or post-reduction for pain control.

Frequency/Dose – Short or intermediate acting injectable anesthetics are recommended. Generally, only one injection is necessary, usually approximately 5 to 10mL. In some cases, a second may be reasonable.

Rationale for Recommendation - Most patients do not require intraarticular anesthetic injections. Some require these injections to assist with obtaining sufficient pain relief to facilitate reduction and thus avoid general anesthesia. Some require these injections after reduction for pain control. Generally, pre-reduction injections utilize more short-term anesthetics and post-reduction injections utilize longer lasting anesthetics. These injections are recommended to facilitate reduction and/or pain control.

Evidence for the Use of Anesthetic Intraarticular Injections

D.5.g Physical Methods/Devices

Posterior Elbow Splint and Sling for Dislocated Elbow

Recommended – for treatment of dislocated elbows.

Indications – Dislocated elbows after reduction.

Duration - Posterior splints are usually applied for approximately 10-17 days. Range of motion exercises are recommended after immobilization.

D.5.h Surgery

Surgery may be required to repair ligaments if there is either sufficient laxity that recurrent dislocations occur or are otherwise unstable.
Surgery for Elbow Joints That Recurrently Dislocate or Are Unstable After Dislocation

Recommended - to repair elbow joints that either recurrently dislocate or are otherwise unstable after dislocation(s).

Indications – Recurrent elbow dislocations and/or unstable elbows after dislocation(s).

Rationale for Recommendation - Most patients do not require surgical repair after elbow dislocation. However, some have unstable joints due to ligament and/or capsular damage and laxity. Others have recurrent dislocations. Surgical repair is successful in some to improve or resolve these issues and is recommended for select patients.

Evidence for the Use of Immobilization and Surgery

D.6 **Elbow Lacerations**
See Hand, Wrist, and Forearm Disorders chapter (to be developed).

D.7 **Elbow Sprains**

An isolated elbow sprain is relatively uncommon and is caused by a significant high-force trauma, resulting in a disruption of ligament(s) about the elbow. The most common mechanism is a fall. Generally, a sprain is accompanied by other problems such as fracture, dislocation, or contusion.

Potential complications need to be evaluated including the motor, sensory, and vascular systems. Such an evaluation is required to rule-out accompanying injury(ies).

For the medical management of dislocation of the elbow, an x-ray should be taken to assure that there is no fracture. Other than mild sprains, medical management of the sprained elbow should generally include an x-ray to assure that there is no fracture.

D.7.a **Diagnostic Studies**

Sprains are diagnosed based on a combination of typical inciting event (usually fall or high-force trauma) combined with characteristic elbow pain and focal tenderness over ligament(s). In contrast with dislocations and fractures, sprains generally have normal, though painful range of motion.

D.7.a.i **Special Studies and Diagnostic and Treatment Considerations**

X-rays for Elbow Sprain

Recommended - at least two to three views to rule-out fractures. Repeat x-rays are also recommended if there is failure to improve as clinically expected over approximately a week.
D.7.a.ii Monitoring Progress
Patients should be re-evaluated seven to ten days after initial evaluation to assure there is progress. If there is a lack of progress, x-ray and re-evaluation is required.

D.7.e Medications
For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

D.7.e.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs)

NSAIDs for Treatment of Elbow Sprains

Recommended - for treatment of Elbow Sprains.

Indications – For Sprains, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration – As needed use may be reasonable for many patients.

Indications for Discontinuation – Resolution of elbow pain, lack of efficacy, or development of adverse effects that necessitate discontinuation.

D.7.e.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding.

Recommended – concomitant use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications – For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration – Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation – Intolerance, development of adverse effects, or discontinuation of NSAID.

D.7.e.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects
Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

Recommended - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or eight hours before the daily aspirin.

D.7.e.iv Acetaminophen for Treatment of Elbow Pain

Recommended - for treatment of elbow pain, particularly in patients with contraindications for NSAIDs.

Indications – All patients with elbow pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency – Per manufacturer’s recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation – Resolution of pain, adverse effects or intolerance.

D.7.e.v Opioids for Select Patients with Elbow Sprains

Recommended - for the treatment of select patients with pain from severe elbow sprains.

Indications – Select patients with severe pain from severe elbow sprains with insufficient control from other means, including acetaminophen and NSAIDs or with contraindications for NSAIDs. Considerable cautions are recommended concerning opioids and minimum numbers of doses should be prescribed as duration of treatment for elbow sprains is usually limited.

Frequency/Dose – As needed dosing. Among the few patients requiring opioids, most require at most a few days to not more than one week of treatment and then generally have insufficient pain for further treatment with opioids.

Indications for Discontinuation – Resolution of pain sufficiently to not require opioids, consumption that does not follow prescription instructions, adverse effects.
Rationale for Recommendation - Most patients do not require opioids. Some patients, particularly with more severe sprains may require opioids. They are recommended for limited duration (not more than one week) use in select patients with elbow sprains.

Evidence for the Use of Opioids for Elbow Sprains

D.7.f Treatments

D.7.f.i Rehabilitation / Devices

Slings for Elbow Sprains

Recommended - for the treatment of elbow sprains.

Duration- Generally should be used for less than 7 to 10 days with gradual reduction in use. Range of motion exercises of the elbow and shoulder are recommended several times daily while using a sling to prevent after complications from reduced ranges of motion.

Evidence for the Use of Slings for Elbow Sprains

D.7.f.ii Activity Modification and Exercise

Patients are usually instructed to perform gentle range-of-motion exercises a few times a day in order to maintain normal range of motion. In addition, interventions are provided to address modifications to performance of ADLs and IADLs.

D.8 Biceps Tendinosis (or Tendinitis) and Tears/Ruptures

Biceps tendinosis (or tendinitis) is a true muscle strain involving the muscle-tendon junction of the biceps brachii. (see NY Shoulder Injury MTG for bicipital tendinitis and ruptures at the shoulder). It typically occurs in the setting of the use of high force, particularly if unaccustomed. Symptoms are non-radiating pain in the muscle-tendon junction and there are generally no paraesthesias. Pain limited weakness is a common complaint. While frequently considered two discrete entities of tendinosis vs. rupture, there is considerable overlap ranging from mild to moderate to severe ruptures. The greater the degree of rupture, the greater the likelihood surgery may be needed to attempt to restore the greatest degree of function, particularly in working age patients.

D.8.a Diagnostic Criteria

Biceps tendinosis is diagnosed based on a combination of typical inciting event (usually high force exertion such as maximal lift, or unaccustomed stereotypical high force use) combined with characteristic localized elbow pain to the affected myotendinous junctions as they insert in the distal biceps’ tendon in the distal upper arm. Focal tenderness is present over the affected, disrupted junctions. Ecchymosis may be present and is generally proportionate to the degree of tear of
the junctions and/or rupture. Biceps ruptures involve a larger degree of tear of the myotendinous junctions up to, and including a complete rupture of one half or, rarely, both of the biceps brachii. These ruptures have a greater degree of associated weakness for elbow flexion. The physical examination also includes palpable abnormalities sometimes described as a “ropey” feeling biceps in the area of the insertion. An accompanying hematoma is often present.

D.8.b Diagnostic Studies

D.8.b.i X-Rays
X-rays are sometimes used to evaluate patients with biceps tendinosis and tears, although MRI and ultrasound are more commonly utilized.

X-rays for Biceps Tendinosis or Ruptures

Recommended - for biceps tendinosis or ruptures.

Rationale for Recommendation - X-rays are not the first imaging study for consideration, as MRI or ultrasound is generally preferable. However, x-rays are particularly warranted if there is an acute traumatic event to help rule-out fracture. X-rays are not invasive, have low adverse effects, and are low cost. Therefore, they are recommended.

D.8.b.ii MRI for Biceps Tendinosis or Ruptures

Recommended - for biceps tendinosis or ruptures.

Indications – Patients with moderate to severe biceps tendinosis or ruptures, particularly in whom the need for surgery is uncertain. Patients with complete ruptures generally do not require MRI as it usually does not alter the need for surgery. Patients with mild tears generally do not require MRI as the test does not alter the treatment plan and the good prognosis.

D.8.b.iii Ultrasound
Diagnostic Ultrasound for Biceps Tendinosis or Ruptures

Recommended - for the evaluation and diagnosis of biceps tendinosis or ruptures.

Indications – Patients with moderate to severe biceps tendinosis or ruptures, particularly those for whom the need for surgery is uncertain. Patients with complete ruptures generally do not require diagnostic ultrasound as it usually does not alter the need for surgery. Patients with mild tears generally do not require ultrasound as the test does not alter the treatment plan and the good prognosis. Ultrasound should generally not be performed in addition to MRI as it usually does not add additional information of benefit.

Rationale for Recommendation - After MRI, diagnostic ultrasound is likely the second most common imaging study to evaluate the degree of
biceps tendinosis or rupture. Ultrasound may assist in evaluating the need for surgery particularly in those patients with moderately severe tears in whom the degree of rupture may help identify whether surgery is likely to be beneficial.

D.8.c Medications
For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

D.8.c.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Biceps Tendinosis and Tears

Recommended - for treatment of Biceps Tendinosis and Tears

Indications – For Biceps Tendinosis and Tears, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration – As needed use may be reasonable for many patients.

Indications for Discontinuation – Resolution of elbow pain, lack of efficacy, or development of adverse effects that necessitate discontinuation.

D.8.c.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding.

Recommended – concomitant use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications – For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration – Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation – Intolerance, development of adverse effects, or discontinuation of NSAID.

D.8.c.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects
Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

Recommended - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

D.8.c.iv Acetaminophen for Treatment of Elbow Pain

Recommended - for treatment of elbow pain, particularly in patients with contraindications for NSAIDs.

Indications – All patients with elbow pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency – Per manufacturer’s recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation – Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs and Acetaminophen for Biceps Tendinosis and Tears

D.8.c.v Opioids for Select Patients with Biceps Tendinosis

Recommended - for treatment of select patients with pain from moderately severe to severe biceps tendinosis or ruptures, particularly with nocturnal sleep disruption. Post-operative patients are also candidates.

Indications – Select patients with severe pain from moderately severe to severe biceps tendinosis and ruptures with insufficient control from other means, including acetaminophen and NSAIDs or with contraindications for NSAIDs. Post-operative patients are candidates. Considerable cautions are recommended concerning opioids and minimum numbers of doses should be prescribed as duration of treatment for elbow sprains is usually limited.

Frequency/Dose – As needed dosing with generally nocturnal dosing preferred for many patients. Post-operative patients may require scheduled dosing for the first few post-operative days. Most non-
operative patients should be weaned off opioids within seven days after the event.

Indications for Discontinuation – Resolution of pain sufficiently to not require opioids, consumption that does not follow prescription instructions, adverse effects.

Rationale for Recommendation - Many patients will require a few days of treatment to not more than one week with opioids in the acute post-operative period, while non-operative patients do not generally require opioids. Patients with moderately severe to severe biceps tendinosis or inadequate control with NSAIDs may require opioids. They are recommended for limited duration (not more than one week) use in select patients.

Evidence for the Use of Opioids for Biceps Tendinosis

D.8. Treatments

D.8.d Treatments

D.8.d.i Initial Care
Patients with severe or complete ruptures should be referred to a surgeon to evaluate the need for surgical repair. Other patients should receive treatment including activity limitations and pain management strategies generally centering on NSAIDs.

D.8.d.i.a Monitoring Progress
Patients should be re-evaluated approximately every seven to 14 days to evaluate progress. If there is a lack of progress, diagnostic testing (see above) and/or referral for potential surgical repair should be considered.

D.8.d.ii Rehabilitation: Devices / Therapy

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient’s daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.
Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

D.8.d.ii.a Exercise
Patients are often instructed to perform gentle range-of-motion exercises within pain-free range a few times a day to maintain as normal a range of motion during healing as practical. Excessive stretching however should generally be avoided during the acute healing phase. Heavy or moderately heavy forceful use should also be avoided in the acute healing phase. In addition, interventions are provided to address modifications to performance of ADLs and IADLs.

Therapy (Active)

D.8.d.ii.b Exercises for Biceps Tendinosis, Ruptures, or Post-Operative Patients

Recommended - strengthening exercises for treatment of biceps tendinosis, ruptures and post-operative patients.

Indications – All biceps tendinosis patients are candidates.

Frequency/Dose/Duration – Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

Duration – Varies widely depending on severity, preinjury conditioning and job demands.

Devices

D.8.d.ii.c Slings and Splints for Biceps Tendinosis, Ruptures and Post-Operative Patients

Recommended - for the treatment of biceps tendinosis, ruptures, and post-operative patients.
Indications – Moderate to severely affected patients, especially for the first week. Post-operative patients also usually treated with posterior splints for approximately TWO weeks (range one to six weeks).

Duration - Generally should be used for less than seven to ten days with gradual reduction in use. Range of motion exercises of the elbow and shoulder are recommended several times daily for non-operative patients while using a sling or splint to prevent after complications from reduced ranges of motion.

D.8.e Surgery

Biceps tendinosis may be severe enough to involve a biceps rupture. These recommendations are for a distal biceps tendon rupture, not a (proximal) bicipital tendon rupture, which occurs in the bicipital groove at the shoulder and often does not require surgery.) Distal biceps tendon ruptures can be managed non-operatively and some authors note non-operative management continues to be acceptable for some, particularly if there are low job demands or older patients. However, distal biceps ruptures generally occur in the setting of supramaximal use of force and requires surgical repair in most employed patients’ operative approaches include single-incision, dual-incision, and endoscopic.

D.8.e.i Surgical Repair for Distal Biceps Ruptures

Recommended - Surgical repair of distal biceps ruptures.

Indications – Biceps tendon ruptures that are either complete, large or in select patients with moderately severe biceps tendinosis patients who fail to adequately progress with non-operative care with which they have demonstrated compliance. Patients with high job physical demands but only moderate tears are also candidates for surgery to attempt to regain sufficient function to return to those job tasks.

D.9 Triceps Tendinosis (or Tendinitis) and Tears/Ruptures

Triceps tendinosis (or tendinitis) is a true muscle strain involving the muscle-tendon junction of the triceps. It is believed to be analogous to biceps tendinosis, including high force mechanism of injury.

D.10 Ulnar Neuropathies at the Elbow; Including Condylar Grove Associated Ulnar Neuropathy and Cubital Tunnel Syndrome
Although it is possible to entrap a nerve at any point along its course, there are two common areas for entrapment of the ulnar nerve at the elbow. The first is in the condylar groove, and the second begins immediately distal to the elbow joint in the true, anatomic cubital tunnel. This tunnel commences as the ulnar nerve begins to traverse distally beneath the aponeurosis.

Figure 1 - The Course of the Ulnar Nerve Across the Elbow

Note the five common sites of compression of the ulnar nerve: the arcade of Struthers, the medial intermuscular septum, the medial epicondyle, the cubital tunnel, and the deep flexor pronator aponeurosis. Reprinted by permission of Mayo Foundation for Medical Education and Research. All rights reserved.

Proper testing to localize the abnormality involves a nerve conduction study that includes at least stimulation above and below the elbow. The role for the “inchin technique” to isolate the location of the nerve conduction velocity decrement and infer the precise location of the entrapment, while recommended by the American Academy of Electrodiagnostic Medicine and logical for its importance to treatment has not been delineated in quality interventional studies. (Cubital tunnel syndrome should theoretically be amenable to treatment with simple decompression. Ulnar neuropathies in the condylar groove should theoretically be less amenable to simple (aka “in situ”) decompression.) Aside from surgical studies, there are no quality studies on which to rely for treatment of ulnar neuropathies, and there is little quality evidence of benefits of treatment options.

D.10.a Initial Care

Initial care involves seeking potential causal factors that can be changed. This is believed to include hyperflexion of the elbow during sleep, work or avocational activities, as well as avoiding leaning on the elbow/nerve (see elbow splinting section below).

D.10.a.i Position of Elbows During Sleep

Recommended - that patients be taught to sleep with their elbows extended, rather than flexed.

D.10.a.ii Elbow Posture During Work or Avocational Activities
Recommended - to avoid hyperflexed (>90°) elbow postures at work (or during avocational activities).

D.10.b Diagnostic Criteria

The differential diagnosis for ulnar neuropathy at the elbow particularly includes ulnar neuropathy at the wrist, C8 cervical radiculopathies, and other neurological entrapments located between the spinal cord and ulnar nerve in the carpal canal including thoracic outlet syndrome, diabetic neuropathy, neuropathy from alcohol, other systemic neuropathies, stroke, other cerebrovascular events, and central nervous system tumors. Most other causes may be eliminated, or the probability reduced, by conducting a careful history, physical exam, or focused testing. Some have reported the vast majority of these patients have no apparent cause.

Patients with a presumptive diagnosis of ulnar neuropathy at the elbow should have: 1) tingling or numbness in an ulnar nerve distribution, generally involving the small digit and ulnar half of the ring finger; and often have 2) symptoms that are provoked either nocturnally or with sustained elbow flexion. Patients with a confirmed diagnosis of ulnar neuropathy at the elbow should have both symptoms as with a presumptive diagnosis above, and a confirmatory electrodiagnostic study (EDS) interpreted as consistent with ulnar neuropathy at the elbow. To make a diagnosis of cubital tunnel syndrome requires inching technique to define the abnormality to the cubital tunnel (rather than in the condylar groove, or “funny bone”).

D.10.b.i Special Studies and Diagnostic and Treatment Considerations

D.10.b.i.a Electrodiagnostic Studies

Electromyography for Diagnosing Subacute or Chronic Peripheral Nerve Entrapments

Recommended - to assist in the diagnosis of subacute or chronic peripheral nerve entrapments including ulnar neuropathies, radial neuropathies and median neuropathies.

Indications – Patients with subacute or chronic paresthesias with or without pain, particularly with unclear diagnosis. In addition to segmental analysis (e.g., above vs. below elbow conduction), patients with peripheral neuropathies in the elbow region should generally have inching technique performed to localize the entrapment which assists with clinical management. It has been stated that most of these patients do not require these tests, rather initially require non-operative treatment.

D.10.b.i.b EDS for Diagnosis and Pre-Operative Assessment of Peripheral Nerve Entrapments

Recommended - to assist in securing a firm diagnosis for those patients without a clear diagnosis. EDS are also recommended as one of two methods to attempt to objectively secure a diagnosis prior to surgical release.

D.10.b.i.c EDS for Initial Evaluation of Patients Suspected of Having a Peripheral Nerve Entrapment

Not Recommended - for initial evaluation of most patients as it does not change the management of the condition and other interventions are believed to be efficacious.

D.10.b.i.d Ultrasound and MRI

Ultrasound and MRI have been used for evaluation of the ulnar nerve.

Diagnostic Ultrasound and MRI for Evaluation and Diagnosis of Ulnar Neuropathies at the Elbow

Not Recommended - for the evaluation and diagnosis of ulnar neuropathies at the elbow.

D.10.c Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

D.10.c.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs)

Recommended - for treatment of acute, subacute, chronic or post operative Ulnar Neuropathies

Indications – For acute, subacute, chronic or post operative Ulnar Neuropathies, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first. For patients having ulnar neuropathy surgical release, generally treat two to six weeks post operative.

Frequency/Duration - As needed use may be reasonable for many patients.

Indications for Discontinuation – Resolution of elbow pain, lack of efficacy, or development of adverse effects that necessitate discontinuation.

D.10.c.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding.
Recommended – concomitant use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications – For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration – Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation – Intolerance, development of adverse effects, or discontinuation of NSAID.

D.10.c.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

Recommended - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or eight hours before the daily aspirin.

D.10.c.iv Acetaminophen for Treatment of Elbow Pain

Recommended - for treatment of elbow pain, particularly in patients with contraindications for NSAIDs.

Indications – All patients with elbow pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency – Per manufacturer’s recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation – Resolution of pain, adverse effects or intolerance.

D.10.c.v Opioids

Opioids have occasionally been used to treat pain for patients with ulnar neuropathies at the elbow. These medications have primarily been used for a few nights in the post-surgical timeframe.

D.10.c.v.a Routine Use of Opioids for Treatment of Acute, Subacute, or Chronic Ulnar Neuropathies

Not Recommended - for the treatment of acute, subacute, or chronic ulnar neuropathies at the elbow.

Rationale for Recommendations - There are no quality studies evaluating opioids for treating ulnar neuropathies. Opioids cause significant adverse effects – poor tolerance, constipation, drowsiness, clouded judgment, memory loss, and potential misuse or dependence have been reported in up to 35% of patients. Before prescribing opioids, patients should be informed of these potential adverse effects and cautioned against operating motor vehicles or machinery. Opioids do not appear to be more effective than safer analgesics for managing most musculoskeletal symptoms; they should only be used if needed for severe pain or for a short time (not more than one week) in the post-operative time. Opioids are not recommended for treatment of ulnar neuropathy, except as a brief post-operative course.

D.10.c.v.b Use of Opioids for Treatment of Select Post-Operative Ulnar Neuropathy Patients

Recommended - for a few days to not more than one week for select patients who have undergone recent ulnar neuropathy surgery, particularly if complications have occurred.

Indications – Select patients who have recently undergone ulnar nerve surgeries, usually transpositions and have intense pain (especially having insufficient pain relief with NSAIDs) or have encountered complications.

Frequency/Dose – Limit use to a few days up to a few weeks; primary use nocturnal to achieve post-operative sleep. Longer term use is occasionally required for those with more significant complications.

Indications for Discontinuation – Resolution of pain, adverse effects, intolerance.

Rationale for Recommendations - Transposition patients have larger incisions and frequently require post-operative opioids for at least a few days, usually in addition to NSAIDs. Some require these medications for a longer time.
Opioids are recommended for brief (not more than one week), select use in post-operative patients with primary use at night to achieve sleep post-operatively.

Glucocorticosteroids (AKA “Steroids”)

Oral and Injections (condylar groove or cubital tunnel)

D.10.c.vi Glucocorticosteroids (Oral or Injections) for Treatment of Acute, Subacute, or Chronic Ulnar Neuropathies at the Elbow

Not Recommended - for the treatment of acute, subacute, or chronic ulnar neuropathies at the elbow. There is no indication for injecting steroids into the cubital tunnel as is done for the carpal tunnel as there is no other structure than the ulnar nerve in the tunnel and steroid injection into the nerve may cause damage.

Evidence for the Use of Glucocorticosteroids for Ulnar Neuropathy at the Elbow

D.10.c.vii Vitamins, Including Pyridoxine, for Acute, Subacute or Chronic Ulnar Neuropathies

Not Recommended - for routine treatment of acute, subacute, or chronic ulnar neuropathies in patients without vitamin deficiencies.

D.10.c.viii Lidocaine Patches for Treatment of Acute, Subacute, or Chronic Ulnar Neuropathies

Not Recommended - for treatment of acute, subacute, or chronic ulnar neuropathies with pain.

D.10.c.ix Ketamine for Treatment of Acute, Subacute, or Chronic Ulnar Neuropathies

Not Recommended - for treatment of acute, subacute, or chronic ulnar neuropathies with pain.

D.10.d Treatments

D.10.d.i Rehabilitation: Devices / Therapy

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient’s daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are
dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

D.10.d.ii Activity Modification and Exercise

Various exercise regimens have been utilized to treat patients with ulnar neuropathies at the elbow, most commonly tendon-gliding and nerve-gliding exercises. In addition, interventions are provided to address modifications to performance of ADLs and IADLs.

Devices

D.10.d.iii Magnets for Management of Pain From Acute, Subacute, or Chronic Ulnar Neuropathies

Not Recommended - for the management of pain for acute, subacute, or chronic ulnar neuropathies.

D.10.d.iv Nocturnal Elbow Splinting for Treatment of Acute, Subacute, or Chronic Ulnar Neuropathies

Recommended - for treatment of acute, subacute, or chronic ulnar neuropathies at the elbow.

Indications – Symptoms consistent with ulnar neuropathy at the elbow, either condylar groove or cubital tunnel

Frequency/Dose – Elbow splints or braces are recommended to be worn while sleeping (range of 45-70 degrees used).

Indications for Discontinuation – Splints should be re-evaluated and potentially re-adjusted if no response within 2 weeks of starting treatment, particularly to assure that the patient is wearing them properly as well as to assess fit. If there is no improvement, splints should be discontinued and the accuracy of the diagnosis re-evaluated.

Evidence for the Use of Nocturnal Elbow Splinting

D.10.d.v Therapeutic Exercise - Physical / Occupational Therapy
Physical or Occupational Therapy for Acute, Subacute, Chronic, or Post Operative Ulnar Neuropathy

Recommended - for the treatment of acute, subacute, chronic, or post-operative ulnar neuropathy.

Frequency/Dose/Duration – Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

Evidence for the Use of Exercise for Ulnar Neuropathy at the Elbow

Passive

D.10.d.vi Low-Level Laser Therapy for Acute, Subacute, or Chronic Ulnar Neuropathies

Not Recommended - for the treatment of acute, subacute, or chronic ulnar neuropathies.

D.10.d.vii Ultrasound for Acute, Subacute, or Chronic Ulnar Neuropathies

Recommended - for the treatment of acute, subacute, or chronic ulnar neuropathies.

Indications – Ulnar neuropathies that are sufficiently symptomatic to warrant treatment. Patients should generally be given nocturnal splints and had an inadequate response.

Indications for Discontinuation – Resolution, failure to objectively improve or intolerance.

Other

D.10.d.viii Acupuncture, Biofeedback, Manipulation and Mobilization, Massage, Soft Tissue Massage, Iontophoresis, Phonophoresis

Not Recommended - for the treatment of acute, subacute, or chronic ulnar neuropathies at the elbow.

D.10.e Surgery

Ulnar Nerve Surgeries (Simple Release, Transpositions, Medial Epicondylectomy)
There are several surgical procedures for treatment of ulnar neuropathy at the elbow.

Referral for surgery may be indicated for patients who have red flags of a serious nature (e.g., compressive neuropathy secondary to acute fracture), or have failed to respond to non-surgical management including elbow posture modifications. Surgical considerations depend on the confirmed diagnosis of the presenting symptoms. If surgery is a consideration, counseling regarding likely outcomes, risks, and benefits, and especially expectations is important. It is also important to set pre-operative expectations that there is a necessity to adhere to the rehabilitative exercise regimen and work through post-operative pain. In the post-operative phase, range-of-motion exercises should involve the elbow, as well as the wrist and should to avoid frozen shoulder (“adhesive capsulitis”)

D.10.e.i Surgical Release for Treatment of Subacute or Chronic Ulnar Neuropathies

Decompression, anterior subcutaneous transposition and medial epicondylectomy

Recommended - for patients who fail non-operative treatment for subacute or chronic ulnar neuropathies or patients who have emergent or urgent indications (e.g., acute compression due to fracture, arthritis or compartment syndrome with unrelenting symptoms of nerve impairment).

Indications – Symptoms of ulnar neuropathy at the elbow, and a significant loss of function, as reflected in significant activity limitations due to the nerve entrapment and that the patient has failed non-operative care usually for at least three months. Patients should generally have failed avoiding nerve irritation at night by preventing prolonged elbow flexion while sleeping, workstation changes to avoid elbow hyperflexion, full compliance in therapy, use of elbow pads, and removing opportunities to rest the elbow on the ulnar groove. Patients with severe symptoms such as continuous tingling and numbness, progression of symptoms or functional impairment may be earlier surgical candidates. Many surgeons will not operate on a patient without a positive electrodiagnostic study. Ideally, the EDS should include inching technique. Conditions of inflammatory nature may take many months to heal and the timing of a surgical consultation referral should take into consideration the normal healing time. The type of surgical procedure selected is dependent on factors that include the preoperative EDS, surgeon’s comfort and experience and surgical anatomy. Generally, a simple decompression is preferred over other procedures for true cubital tunnel syndrome.

D.10.e.ii Surgical Release for Treatment of Subacute or Chronic Ulnar Neuropathies (Anterior submuscular transposition)
Not Recommended – anterior submuscular transposition for the treatment of subacute or chronic ulnar neuropathies

Evidence for the Use of Surgery for Ulnar Neuropathy

D.11 Radial Nerve Entrapment (Including Radial Tunnel Syndrome)

Radial nerve entrapment, particularly of the posterior interosseous branch of the radial nerve, causes proximal forearm aching and pain that persists despite presumably effective treatment. It is clinically somewhat difficult to distinguish from non-specific forearm and elbow pain, is considered controversial, and it is sometimes referred to as “resistant tennis elbow” or “supinator syndrome.” A relatively rare condition, radial nerve entrapment is estimated to be approximately 30 to 100 fold less common than carpal tunnel syndrome. There are multiple sites for potential entrapment. Most commonly, these sites include the extensor carpi radialis brevis origin, fibrous bands overlying the radial head, radial recurrent arterial fan, and the arcade of Frohse at the entrance to the supinator muscle.

A confirmatory electrodiagnostic motor study is helpful (often difficult to obtain) and is recommended.

In the absence of quality evidence for treatment of these radiculopathies, it is recommended that the treatments for ulnar neuropathy at the elbow (summarized below) be used to infer treatment for radial neuropathies.

D.11.a Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

D.11.a.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, Chronic, or Post-Operative Pronator Syndrome Pain

Recommended - for treatment of acute, subacute, chronic, or post-operative Pronator Syndrome pain

Indications – For acute, subacute, chronic, or post-operative Pronator Syndrome pain, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration – As needed use may be reasonable for many patients.
Indications for Discontinuation – Resolution of elbow pain, lack of efficacy, or development of adverse effects that necessitate discontinuation.

D.11.a.ii **NSAIDs for Patients at High Risk of Gastrointestinal Bleeding.**

Recommended – concomitant use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications – For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration – Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation – Intolerance, development of adverse effects, or discontinuation of NSAID.

D.11.a.iii **NSAIDs for Patients at Risk for Cardiovascular Adverse Effects**

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

Recommended - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or eight hours before the daily aspirin.

D.11.a.iv **Acetaminophen for Treatment of Elbow Pain**

Recommended - for treatment of elbow pain, particularly in patients with contraindications for NSAIDs.

Indications – All patients with elbow pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency – Per manufacturer’s recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.
Indications for Discontinuation – Resolution of pain, adverse effects or intolerance.

D.11.a.v Glucocorticosteroids – Oral or Injections

Not Recommended – for acute, subacute, or chronic radial nerve entrapment

D.11.a.vi Opioids

Not Recommended – for acute, subacute, or chronic radial nerve entrapment pain

Recommended – for post-operative radial nerve pain management, for not more than one week

Rationale for Recommendations - There are no quality studies evaluating opioids for treating radial nerve entrapment. Opioids cause significant adverse effects – poor tolerance, constipation, drowsiness, clouded judgment, memory loss, and potential misuse or dependence have been reported in up to 35% of patients. Before prescribing opioids, patients should be informed of these potential adverse effects and cautioned against operating motor vehicles or machinery. Opioids do not appear to be more effective than safer analgesics for managing most musculoskeletal symptoms; they should only be used if needed for severe pain or for a short time (not more than one week) in the post-operative time. Opioids are not recommended for treatment of radial nerve entrapment, except as a brief post-operative course.

D.11.a.vii Vitamins

Not Recommended – vitamins, including pyridoxine, for acute, subacute, or chronic radial nerve entrapment

D.11.a.viii Lidocaine Patches

Not Recommended – for acute, subacute, or chronic radial nerve entrapment pain.

D.11.a.ix Ketamine

Not Recommended – for acute, subacute, or chronic radial nerve entrapment

D.11.b Treatments

D.11.b.i Rehabilitation: Therapy / Devices

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to
meet the patient’s daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

D.11.b.i.a Therapy (Active and Passive)

Physical or Occupational Therapy for Acute, Subacute, Chronic, or Post Operative Radial Nerve Entrapment

Recommended - for the treatment of acute, subacute, chronic, or post-operative Radial Nerve Entrapment.

Frequency/Dose/Duration – Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy. of the treatment process in order to maintain improvement

Indications for Discontinuation – Resolution of elbow pain, intolerance, lack of efficacy or non-compliance including non-compliance with home exercises prescribed.

D.11.b.ii Magnets

Not Recommend – for acute, subacute, or chronic radial nerve entrapment.
D.11.b.ii Elbow and Wrist Splinting

Recommended – for acute, subacute, or chronic radial nerve entrapment.

Other

D.11.b.iv Accupuncture, Biofeedback, Manipulation and Mobilizaiton, Massage, Soft Tissue Massage, Iontophoresis, Phonophoresis

Not Recommended – Acute, subacute, or chronic radial nerve entrapment

D.11.b.v Low-Level Laser Therapy

Not Recommended – for acute, subacute, or chronic radial nerve entrapment

D.11.b.vi Ultrasound

Recommended – for acute, subacute, or chronic radial nerve entrapment

D.11.c Surgery

Radial Nerve Surgeries
Referral for surgery may be indicated for patients who have red flags of a serious nature (e.g., compressive neuropathy secondary to acute fracture), or have failed to respond to non-surgical management including wrist splints. Surgical considerations depend on the confirmed diagnosis of the presenting symptoms. If surgery is a consideration, counseling regarding likely outcomes, risks, and benefits, and especially expectations is important. It is also important to set pre-operative expectations that there is a necessity to adhere to the rehabilitative exercise regimen and work through post-operative pain. In the post-operative phase, range-of-motion exercises should involve the elbow, as well as the wrist and shoulder to avoid frozen shoulder (“adhesive capsulitis”).

D.11.c.i Surgical Release for Treatment of Subacute or Chronic Radial Neuropathies

Recommended - for patients who fail non-operative treatment for subacute or chronic radial neuropathies or patients who have emergent or urgent indications (e.g., acute compression due to fracture, or compartment syndrome with unrelenting symptoms of nerve impairment).

Indications – Symptoms of radial neuropathy at the elbow, and a significant loss of function, as reflected in significant activity limitations due to the nerve entrapment and that the patient has failed non-operative care usually for at least three to six months. Patients should generally have failed wrist splints, avoidance of aggravating exposures,
and full compliance in therapy. Patients with severe symptoms such as continuous tingling and numbness, progression of symptoms or functional impairment may be earlier surgical candidates. Many surgeons will not operate on a patient without a positive electrodiagnostic study. Ideally, the EDS should include inching technique. The type of surgical procedure selected is dependent on factors that include the preoperative electrodiagnostic studies, surgeon’s comfort and experience and surgical anatomy.

D.12 Pronator Syndrome (Median Neuropathies in the Forearm)

Pronator syndrome involves median nerve entrapment under or within the pronator teres muscle in the proximal forearm. It causes pain in the flexor forearm and paresthesias similar to carpal tunnel syndrome, which is the main consideration in the differential diagnosis. Pronator syndrome is believed to cause nocturnal awakening less frequently than carpal tunnel syndrome. A confirmatory electrodiagnostic study is helpful and is recommended.

D.12.a Diagnostic Testing

D.12.a.i Pronator Syndrome Electrodiagnostic Study

Recommended – for confirmation of Pronator Syndrome

D.12.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

D.12.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, Chronic, or Post-Operative Pronator Syndrome pain

Recommended - for treatment of acute, subacute, chronic, or post-operative Pronator Syndrome pain

Indications – For acute, subacute, chronic, or post-operative Pronator Syndrome pain, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration – As needed use may be reasonable for many patients.
Indications for Discontinuation — Resolution of elbow pain, lack of efficacy, or development of adverse effects that necessitate discontinuation.

D.12.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding.

Recommended — concomitant use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications — For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration — Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation — Intolerance, development of adverse effects, or discontinuation of NSAID.

D.12.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

Recommended - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or eight hours before the daily aspirin.

D.12.b.iv Acetaminophen for Treatment of Elbow Pain

Recommended - for treatment of elbow pain, particularly in patients with contraindications for NSAIDs.

Indications — All patients with elbow pain, including acute, subacute, chronic, and post-operative.
Dose/Frequency – Per manufacturer’s recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation – Resolution of pain, adverse effects or intolerance.

D.12.b.v Opioids

Not Recommended – for acute, subacute, or chronic Pronator Syndrome pain

Recommended - for post-operative Pronator Syndrome pain management for not more than one week.

Rationale for Recommendations - There are no quality studies evaluating opioids for treating pronator syndrome. Opioids cause significant adverse effects – poor tolerance, constipation, drowsiness, clouded judgment, memory loss, and potential misuse or dependence have been reported in up to 35% of patients. Before prescribing opioids, patients should be informed of these potential adverse effects and cautioned against operating motor vehicles or machinery. Opioids do not appear to be more effective than safer analgesics for managing most musculoskeletal symptoms; they should only be used if needed for severe pain or for a short time (not more than one week) in the post-operative time. Opioids are not recommended for treatment of pronator syndrome, except as a brief post-operative course.

D.12.b.vi Glucocorticosteroids – Oral or Injections

Not Recommended – for acute, subacute, or chronic Pronator Syndrome

D.12.b.vii Vitamins

Not Recommended – vitamins, including pyridoxine, for acute, subacute, or chronic Pronator Syndrome

D.12.b.viii Lidocaine Patches

Not Recommended – for acute, subacute, or chronic Pronator Syndrome pain

D.12.b.ix Ketamine

Not Recommended – for acute, subacute, or chronic Pronator Syndrome

D.12.c Treatments

D.12.c.i Rehabilitation: Devices / Therapy
Devices

D.12.c.i.a Magnets

Not Recommend – for acute, subacute, or chronic Pronator Syndrome

D.12.c.i.b Elbow and Wrist Splinting

Recommended – for acute, subacute, or chronic Pronator Syndrome

Therapy (Active and Passive)
Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient’s daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

D.12.c.i.c Therapeutic Exercise: Physical or Occupational Therapy for Acute, Subacute, Chronic, or Post Operative Pronator Syndrome

Recommended - for the treatment of acute, subacute, chronic, or post-operative Pronator Syndrome.

Frequency/Dose/Duration – Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work
activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

Indications for Discontinuation – Resolution of elbow pain, intolerance, lack of efficacy or non-compliance including non-compliance with home exercises prescribed.

Passive

D.12.c.i.d Low-Level Laser Therapy

Not Recommended – for acute, subacute, or chronic Pronator Syndrome

D.12.c.i.e Ultrasound

Recommended – for acute, subacute, or chronic Pronator Syndrome

Other

D.12.c.i.f Acupuncture, Biofeedback, Manipulation and Mobilization, Massage, Soft Tissue Massage, Iontophoresis, Phonophoresis

Not Recommended – Acute, subacute, or chronic Pronator Syndrome

D.12.d Surgery

Median Nerve Surgeries

Surgical release of the median nerve for pronator syndrome has been performed. Referral for surgery may be indicated for patients who have red flags of a serious nature (e.g., compressive neuropathy secondary to acute fracture), or have failed to respond to non-surgical management including wrist splints. Surgical considerations depend on the confirmed diagnosis of the presenting symptoms. If surgery is a consideration, counseling regarding likely outcomes, risks, and benefits, and especially expectations is important. It is also important to set pre-operative expectations that there is a necessity to adhere to the rehabilitative exercise regimen and work through post-operative pain. In the post-operative phase, range-of-motion exercises should involve the elbow, as well as the wrist and shoulder to avoid frozen shoulder (“adhesive capsulitis”).

D.12.d.i. Surgical Release for Treatment of Subacute or Chronic Forearm Median Neuropathies, including Pronator Syndrome

Recommended - for patients who fail non-operative treatment for subacute or chronic median neuropathies in the forearm. It is also recommended for patients who have emergent or urgent indications (e.g., acute compression due to fracture, or compartment syndrome with unrelenting symptoms of nerve impairment).
Indications – Symptoms of median neuropathy in the forearm, and a significant loss of function, as reflected in significant activity limitations due to the nerve entrapment and that the patient has failed non-operative care usually for at least three to six months. Patients should generally have failed wrist splints, avoidance of aggravating exposures, and full compliance in therapy. Patients with severe symptoms such as continuous tingling and numbness, progression of symptoms or functional impairment may be earlier surgical candidates. Many surgeons will not operate on a patient without a positive electrodiagnostic study. Ideally, the EDS should include inching technique. The type of surgical procedure selected is dependent on factors that include the preoperative electrodiagnostic studies, surgeon’s comfort and experience and surgical anatomy.

Rationale for Recommendation - If, after at least three to six months of conservative treatment, the patient fails to show signs of improvement, surgery may be a reasonable option if there is unequivocal evidence of median neuropathy that includes positive electrodiagnostic studies and objective evidence of loss of function as outlined above. Surgery is recommended for carefully selected patients.
Appendix One: Evidence of Use Tables

Evidence for the Use of NSAIDs for Lateral Epicondylalgia

There are 1 high- and 2 moderate- (one with 2 reports) quality RCTs incorporated in this analysis. There are 3 low-quality RCTs(169, 170, 179) (Stull 86; Adelaar 87; Toker 08) in Appendix 2.

<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labelle 1997 RCT</td>
<td>8.0</td>
<td>N = 128 with lateral epicondylitis (lateral elbow pain, pain on palpation of epicondylo or common extensor mass, pain with dynamic wrist pronation and dorsi-flexion against resistance with elbow extension, reproduce pain with static stretching of pronated wrist in palmar flexion with extended elbow and normal x-rays) 43% <6 weeks, 44% >6 months duration.</td>
<td>Diclofenac sodium SR 75mg BID vs. placebo for 28 days. Both groups cast immobilized for 14 days and were not to perform "repetitive movements" for 21 days.</td>
<td>Maximum pain-free grip strength improved by 5.9 kg after 28 days (p <0.001), but only trend towards significance between groups (7.2±9.8 vs. 4.6±10.1, p = 0.20). Diclofenac superior to placebo by VAS scale at 28 days (-29.9±26.3 vs. 16.0±27.4 mm, p <0.005). VAS function scale trended towards diclofenac (p = 0.10). No significant difference between groups for pain-free function index (p = 0.52). Ratio of maximum grip strength also favored diclofenac (p <0.05).</td>
<td>“Taking into account the limited improvement noted over rest and cast immobilization and the number of associated adverse events, it is difficult to recommend the use of diclofenac in the treatment of lateral epicondylitis at the dosage used in this study.”</td>
<td>Detailed case definition; cast use unusual, but both groups so treated. Confounders addressed age, gender, pain duration, social class, work status, general health, movement/strength, and disease, or medication. High frequency of adverse events in diclofenac group (mostly abdominal pain/diarrhea). Data suggest modest efficacy of NSAID.</td>
</tr>
<tr>
<td>Hay 1999 RCT</td>
<td>7.5</td>
<td>N = 164 with lateral epicondylitis (pain and tenderness and pain on resisted isometric wrist extensor contract-ion). No treatment prior 12 months. Duration unclear, with approx 1/3 chronic.</td>
<td>Naproxen 500mg BID for 2 weeks vs. placebo (unmarked vitamin C) BID for 2 weeks) vs. methylprednisolone 20mg plus 0.5mL 1% lignocaine injection 1cm distal to lateral epicondylo towards tender point; 12 months follow-up.</td>
<td>Percentages better (pain score ≤3) (4 weeks/6 months/12 months): injection (82/65/84) vs. naproxen (48/81/85) vs. placebo (50/83/82). Injection superior at 4 weeks (p <0.0001). Naproxen or placebo vs. injection slightly favored at 6/12 months.</td>
<td>“Early local corticosteroid injection is effective for lateral epicondylitis. Outcome at one year was good in all groups, and effective early treatment does not seem to influence this.”</td>
<td>Confounders addressed age, gender, pain duration, social class, work status, general health, movement/strength, and disease, or medication. Local skin atrophy at lateral epicondyle in 2 at 6 months, 1 at 12 months. Naproxen discontinued in 4 due to GI adverse effects. Data suggest comparable efficacy.</td>
</tr>
<tr>
<td>Author/Year</td>
<td>Score (0-11)</td>
<td>Population</td>
<td>Comparison Group</td>
<td>Results</td>
<td>Conclusion</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------------</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>Lewis 2005</td>
<td>7.5</td>
<td>N = 164</td>
<td>Injection (20mg methylprednisolone plus 0.5mL 1% lignocaine) 1cm distal to epicondyle towards most tender point vs. naproxen (200mg BID) vs. placebo; 5-day duration of observation</td>
<td>Naproxen and injection groups both improved by Day 3 (p <0.01). Injection improved better than other 2 groups over 5 days, (p<0.05).</td>
<td>“Steroid injection was associated with an increase in reported pain for the first 24 hours of treatment, but the therapeutic benefits compared with naproxen and placebo were evident 3 to 4 days after the start of the treatment.”</td>
<td>This report of above trial was for first 5 days compared with 1-year trial. Patients not blinded to treatment. Data suggest injection/NSAID superior to placebo for ultra-short term follow-up.</td>
</tr>
<tr>
<td>Rosenthal 1984</td>
<td>4.5</td>
<td>N = 50 with humeroscapular periarthritis, acute lateral or medial epicondylitis (<10 days duration)</td>
<td>Flurbiprofen 100mg QID (could be decreased to 50mg QID after 1-2 weeks) vs. piroxicam 20mg BID (could be decreased to 20mg QID) for 4 weeks</td>
<td>Pain scores (Day 0/7/14/28): flurbiprofen (29.6/69.9/80.2/84.0) vs. piroxicam (27.4/63.8/68.7/72.1), p <0.05 at Day 14. Global Assessments (Days 7/14/28): flurbiprofen (2.4/3.9/5.2) vs. piroxicam (2.1/3.1/4.1), NS. Significant differences in favor of flurbiprofen for pain on passive movement Days 7, 14, and 28; pain on active movement Days 14 and 28, pain on pressure Day 28.</td>
<td>“Flurbiprofen was significantly superior to piroxicam with regard to relief of pain...[F]lurbiprofen showed greater improvements in all the other parameters throughout the study period.”</td>
<td>Data suggest flurbiprofen superior to piroxicam for patients with acute humeroscapular periarthritis and epicondylitis.</td>
</tr>
</tbody>
</table>

Evidence for the Use of Topical NSAIDs and Other Agents for Lateral Epicondylalgia

There are 4 moderate-quality RCTs and randomized crossover trials incorporated in this analysis. There are 3 low quality RCTs(188, 190, 191) (Kroll 89; Burton 88; Liow 02) in Appendix 2.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Type</th>
<th>N</th>
<th>Description</th>
<th>Treatment Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritchie 1996</td>
<td>Crossover trial</td>
<td>4.5</td>
<td>N = 137 with multiple conditions (medial or lateral epicondylitis, supraspinatus tendinitis, bicipital tendinitis, subacromial bursitis or adhesive capsulitis). 53% shoulder vs. 47% elbow-related conditions.</td>
<td>Flurbiprofen local-action transcutaneous patch (40mg BID) vs. piroxicam gel (3cm, 0.5%, approximatel y 0.9g QID). Paracetamol (500mg) available as rescue medication.</td>
<td>Overall pain severity rated by unblinded investigator greater improvement on flurbiprofen (42%) vs. piroxicam (26%), p = 0.006. Improvement in overall severity of tenderness also favored flurbiprofen (26% vs. 16%, p = 0.03). At end of crossover phase 69% chose to continue with flurbiprofen LAT vs. 39% PG, p <0.001.</td>
</tr>
<tr>
<td>Burnham 1998</td>
<td>Crossover trial</td>
<td>4.5</td>
<td>N = 14 with lateral epicondylitis of at least 2 months (mean 8.3 months)</td>
<td>2% diclofenac sodium in a pluronic lecithin liposome organo-gel (PLO) vs. placebo for 1 week duration</td>
<td>Graphic data presented. Average wrist extensor strength greater with diclofenac (p = 0.03). Pain less (p = 0.007) while using the diclofenac.</td>
</tr>
<tr>
<td>Schapira 1991</td>
<td>RCT</td>
<td>4.5</td>
<td>N = 32 with lateral epicondylitis of under 4 weeks duration</td>
<td>Diclofenac sodium gel vs. placebo QID for 2 weeks</td>
<td>Mostly graphic data presented. Percentage with moderate and severe pain or moderate incapacity (day 1/day 14): pain in AM</td>
</tr>
</tbody>
</table>

Both treatments were well tolerated with a low incidence of mainly local adverse events. These results showed that flurbiprofen LAT had a greater efficacy than piroxicam gel, and was preferred by patients in the treatment of painful soft-tissue rheumatism of the shoulder and elbow.

Open label, no placebo. Mixed disorders and no stratification reported regarding potentially unequal results between more superficial vs. deep tissue disorders. Confounders addressed: patient groups balanced for gender, diagnosis, severity and duration of condition. Short duration of 4 days for each treatment followed by a choice treatment for 6 days, total 14 days. Limited results data suggest flurbiprofen superior to piroxicam.

Topical 2% diclofenac in PLO appears to provide effective short-term reduction in elbow pain and wrist extensor weakness associated with chronic lateral epicondylitis. Caution is still advised when patients with a history of peptic ulcer disease use topical diclofenac, particularly if the application area is broad.

The results show a statistically significant gradually increasing clinical improvement in patients treated with diclofenac. Short-term study (14 days duration). No adverse effects observed except for a solitary transient, mild, and localized
Evidence for Use of Opioids for Lateral Epicondylalgia

There are no quality trials evaluating the use of opioids for treatment of pain from lateral epicondylalgia.

Evidence for the Use of Epicondylalgia Supports

There are 5 moderate-quality RCTs or randomized crossover trials (one with two reports) incorporated into this analysis. There are 7 low-quality RCTs or psuedorandomized controlled trials (190, 193, 206-208, 219, 220) and 2 experimental studies (217, 221) (Jafarian 09; Ng 04) in Appendix 2.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Score</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Struijs 2004 RCT</td>
<td>7.0</td>
<td>N = 180 with lateral epicondylitis (lateral elbow pain, aggravated with both epicondylar pressure and resisted wrist dorsiflexion) for at least 6 weeks</td>
<td>Brace-only (Velcro strap, Epipoint, day use continuously) vs. physical therapy (9 sessions: 7.5 min, ultrasound, friction massage 5-10 min., progressive exercise program, HEP 2x/day) vs. brace plus PT 6 weeks; 26 wks follow-up.</td>
<td>No differences in success between groups. Mean±SD patient satisfaction comparing group A (PT) vs. group B (Brace) vs. group C (Combination): After 6 weeks: 75±20 vs. 66±26 vs. 77±19; p (A-B) <0.05; P (B-C) <0.05. Pressure pain after 6 weeks: 17±37 vs. 22±33 vs. 30±30; p (A-C) <0.05.</td>
<td>"Conflicting results were found. Brace treatment might be useful as initial therapy. Combination therapy has no additional advantage compared to physical therapy but is superior to brace only for the short term."</td>
<td>Multiple co-interventions in physical therapy. No differences over 6 months to a year. Data suggest minimal short term benefit of physical therapy at 6 weeks.</td>
</tr>
<tr>
<td>Struijs 2006 RCT</td>
<td>7.0</td>
<td>N= 180 with tennis elbow</td>
<td>Brace (n=68) vs. physiotherapy (n=56) vs. combination of the two (n=56) with follow-ups at 6/26/52 weeks.</td>
<td>Success rates were 89% (47) for physiotherapy, 86% (54) for brace, and 87% (47) for combination.</td>
<td>"No clinically relevant or statistically significant differences in costs were identified between three strategies."</td>
<td>Cost effectiveness study. Follow-up of 2004 study.</td>
</tr>
<tr>
<td>Öken 2008 RCT</td>
<td>5.5</td>
<td>N = 58 with lateral epicondylitis (lateral elbow pain, tenderness, pain on resisted wrist</td>
<td>Brace (Ortho-care 3125) during day for 2 weeks vs. ultrasound (1MHz, 1.5W/cm² for 5 minutes, 5 days a week for 2</td>
<td>VAS pain (pre/Week 2/Week 6): brace (8.1±1.3/4.8±2.6/6.7±0.9) vs. US (7.8±1.5/6.4±3.1/5.7±2.2) vs. laser (7.1±1.4/4.4±</td>
<td>"A brace has a shorter beneficial effect than US and laser therapy in reducing pain, and that laser therapy is more effective than the brace and US treatment in combination.</td>
<td>All received exercises. Co-interventions not controlled. Some trends in baseline differences with lower pain in laser group and longer duration (3.5 vs. 4.3</td>
</tr>
<tr>
<td>Study</td>
<td>Methodology</td>
<td>n</td>
<td>Patients</td>
<td>Interventions</td>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>---------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>van de Streek 2004 RCT</td>
<td>N = 43 with tennis elbow; duration at least 3 weeks</td>
<td>4.5</td>
<td>Elbow band (Thãmert Epi-med, Group I, n = 20) vs. forearm/hand splint (Thãmert Epi-med elbow band, orthoflex brace and aluminum bar from elbow to palm, Group II, n = 23) for 6 weeks</td>
<td>Sum score overall PRFEQ (pre/post): Group 1 (82.5±22.0/56.6±24.0) vs. Group 2 (77.5±26.3/58.3±35.1). No differences in Maximum grip strengths, sum pain score, function scores.</td>
<td>Some baseline differences that may bias against splint (prior treatment 39% vs. 5%). Splint noted to have interfered with work for some. Data suggest no differences between elbow band and forearm brace.</td>
<td></td>
</tr>
<tr>
<td>Faes 2006 Randomized crossover trial</td>
<td>N = 63 with lateral epicondylitis ages 18-70, with persistent symptoms despite alternative treatments; durations median 4, 5.5 months (minimum 2 months)</td>
<td>4.5</td>
<td>Dynamic extensor brace (Group 1, n = 30) vs. no brace (Group 2, n = 33) for 12 weeks each; 24 weeks follow-up</td>
<td>Brace first group improved more rapidly than no-brace group all outcome measures in first 12 week period, p <0.042. When crossover, braced first group sustained treatment effect. At 24 weeks, no differences between groups of brace wearers for any outcome measures.</td>
<td>“The dynamic extensor brace is an effective therapeutic tool for treating lateral epicondylitis.” Brace is on the wrist to off-load the elbow. May interfere with work. Data suggest efficacy.</td>
<td></td>
</tr>
</tbody>
</table>
| Haker 1993 RCT | N = 61 with lateral elbow pain and 2+ of: tenderness over lateral epicondyle, resisted wrist extension, passive extensor stretching, resisted finger extension; duration at least 1 month | 4.0 | Elbow band (Epicondylitis-Clasp, Group I, n = 11) vs. splint (forearm support with wrist in 30° dorsiflexion, Group II, n = 19) vs. injection (triamcinolone 0.2mL of 10mg/mL plus bupivacaine HCl 0.3mL into maximal tenderness; 2nd injection in 1 week if no effect, Group III, n = 19); 3 months | Percent excellent or good outcomes (2 weeks/3 months/6 months/12 months): Group 1 (11/50/44/38) vs. Group II (5/21/53/42) vs. Group III (68/63/28/31). Steroid superior at 2 weeks (p <0.001), and NS other times. Vigorimeter test different between group I (2) and group III (28) at 2 weeks, p <0.05, and between group II (3) and group III. | “Despite the high incidence of recurrence and the clinical side-effects reported after local steroid injection… steroid injection might be the treatment of choice in very severe cases to achieve rapid relief of pain.” Data suggest injection superior in short term. Trend towards worse results in injection at 6-12 months.
Evidence for Exercise Programs for Lateral Epicondylalgia

There are 2 high- and 9 moderate-quality RCTs (one with 2 reports) incorporated into this analysis. There are 6 low-quality RCTs or pseudorandomized controlled trials (193, 204, 206, 220, 236, 237) (Dwars 90; Svernlov 01; Luginbuhl 08; Clements 93; Croisier 07; Tyler 10) in Appendix 2.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisset 2006, 2009 RCT</td>
<td>7.0</td>
<td>N = 198 with tennis elbow, at least 6 weeks duration</td>
<td>Wait and see vs. injection (triamcinolone acetonide 20mg plus 1mL 1% lidocaine) vs. physiotherapy (elbow manipulation and therapeutic exercise, 8 treatments of 30 minutes plus HEP including resistant band over 6 weeks). All received information booklet and “practical advice.”</td>
<td>For pain-free grip ratio: at 3/6 weeks injection (compared to wait and see) favorable with 42.0 (32.6 to 51.3)/36.4 (25.6 to 46.3), mean (95% CI). At 26/52 weeks wait and see favorable with -19.6 (-33.0 to -6.2)/-12.1 (-23.6 to 0.3). At 6 weeks physiotherapy favorable over wait and see at 20.1 (10.3 to 30.0), at 52 weeks less favorable at 4.3 (-7.5 to 16.2). Injection favored over physiotherapy at 3/6 weeks with 31.2 (22.2 to 40.2)/16.3 (6.6 to 26.0), at 26/52 weeks physiotherapy favorable with -30.1 (-43.1 to -17.2)/-16.4 (-27.9 to -4.8). For Assessor severity rating: at 3/6 weeks injection favorable over wait and see at 35.9 (28.3 to 43.4)/29.9 (22.2 to 37.7), at 26/52 weeks wait and see favorable -17.5 (-26.2 to -8.9)/-8.3 (-15.2 to -1.3). Physiotherapy overall favorable over wait and see at 3/52 weeks 9.8 (2.3 to 17.3)/5.1 (-1.9 to 15.2). Injection at 3/6 weeks favorable over physiotherapy 26.1 (18.7 to 33.4)/15.0 (7.2 to 22.8).</td>
<td>“Physiotherapy combining elbow manipulation and exercise has a superior benefit to wait and see in the first six weeks and to corticosteroid injections after six weeks, providing a reasonable alternative to injections in the mid to long term. The significant short term benefits of corticosteroid injection are paradoxically reversed after six weeks, with high recurrence rates, implying that this treatment should be used with caution in the management of tennis elbow.”</td>
<td>Confounders addressed include removal of those participants who did not adhere to the protocol, assessment of non-protocol treatment, blinding (had assessor guess at end of study and conducted post-hoc analyses). Data suggest injections most successful short-term. Wait and see and physiotherapy equivalent at 1 year.</td>
</tr>
</tbody>
</table>

brace/splint use; 1 year follow-up.

(28), p <0.05.
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Participants</th>
<th>Intervention A (n) vs. Intervention B (n)</th>
<th>Outcome Measures</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonks 2007</td>
<td>RCT</td>
<td>N = 48 with diagnosis of tennis elbow (pain on palpation and resisted wrist extension). Duration unclear.</td>
<td>No treatment vs injection only (triamcinolone 10mg plus 2% lignocaine, total 1mL to symptomatically tender area) vs physiotherapy only (Pienimaki Physiotherapy 1996), stretching and conditioning) vs combined. 7 weeks follow-up.</td>
<td>Patient Related Forearm Evaluation Questionnaire (PRFEQ) superior in injection group for pain (-2.88±1.80 vs. PT -0.70±1.85 vs. combined -3.31±2.81 vs. observation 0.34±1.43), p = 0.001), PRFEQ function (p = 0.001), and overall (p = 0.001). Pain Free Grip Strength changes from baseline (10.14±8.64 vs. 4.96 ±12.22 vs. 8.76±6.13 vs. 1.47±7.7), NS.</td>
<td>"Injections alone are effective not only in terms of their pain relieving and function improving effect, but are much more time and cost efficient than physiotherapy."</td>
<td>Relatively small sample sizes to detect benefits between groups. Data suggest injections effective, but trends appear in data in favor of exercise over observation.</td>
</tr>
<tr>
<td>Park 2010</td>
<td>RCT</td>
<td>N=31 patients with lateral epicondylitis with persistent symptoms for at least 6 weeks</td>
<td>Immediate physical therapy (group I) (n=16) vs. delayed physical therapy after 4 weeks of NSAIDs (group D) (n=15).</td>
<td>Mean±SD VAS scores comparing Group I vs. Group D at 1month: 29.7±11.8 vs. 49.4±13.9; p<0.01. No differences were found at months 3 and 6.</td>
<td>"[I]sometric exercise reduces pain and improves elbow function within a short period. After three-months of follow-up, except for a difference in compliance at three months, there were no differences in the other variables."</td>
<td>Immediate vs. delayed PT biases in favor of immediate as equivalent to wait-listed controls. Compliance good only in immediate treatment groups. No differences at 3 months. Suggests no need to rush therapy.</td>
</tr>
<tr>
<td>Martinez-Silvestrini 2005</td>
<td>RCT</td>
<td>N = 94 patients with chronic (>3 months) lateral elbow pain; maximal tenderness at lateral epicondyle and pain with 2 of: resisted wrist extension, resisted middle finger</td>
<td>Stretching (wrist extensors x 30s, 3 reps TID) and other conservative therapy (strap, education, avoid exacerbating activities, ice massage TID) vs. stretching plus concentric strengthening (progressive, purely concentric, resistance bands) vs. stretching plus eccentric strengthening (progressive.</td>
<td>Mean±SD VAS score (baseline/6 weeks) comparing stretching vs. concentric vs. eccentric: 48±21/25±24 vs. 49±21/35±25 vs. 46±20/24±24; p = 0.33 between groups. Also no differences in pain-free grip. Patient-rated Forearm Evaluation Questionnaire and DASH function.</td>
<td>"Although there were no significant differences in outcome among the groups, eccentric strengthening did not cause subjects to worsen. Further studies are needed to assess the unique effects of a more intense or longer eccentric strengthening program for patients with lateral epicondylitis."</td>
<td>No control for multiple co-interventions. Data suggest no meaningful differences in outcomes.</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Design</td>
<td>Treatment A</td>
<td>Treatment B</td>
<td>Outcome Measures</td>
<td>Results/Comments</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Coombes</td>
<td>2013</td>
<td>RCT</td>
<td>Saline injection</td>
<td>Glucocorticoid injections</td>
<td>VAS pain at rest, Isokinetic torque, Isokinetic strength</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vs. corticosteroid injection</td>
<td>vs. corticosteroid injection</td>
<td>Changes after 4 weeks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[8x30-minute sessions plus HEP (2 times a day)]</td>
<td>[8x30-minute sessions plus HEP (2 times a day)]</td>
<td>Significant improvement (p = 0.004).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Among patients with chronic unilateral lateral epicondylalgia, the use of corticosteroid injection vs. placebo injection resulted in worse clinical outcomes after 1 year, and physiotherapy did not result in a significant difference.</td>
</tr>
<tr>
<td>Pienimäki</td>
<td>1996</td>
<td>RCT</td>
<td>Exercise (PT appt QO week with stepped slow repeated wrist and forearm stretches, muscle conditioning, occupational exercises.) HEP 4-6 times a day vs. ultrasound (0.3-0.7 W/cm², 10-15 minute session, 2-3 times a week) for 6 to 8 weeks treatment.</td>
<td>Exercise vs. ultrasound</td>
<td>VAS pain at rest, Isokinetic torque</td>
<td>Exercise superior to ultrasound.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vs. ultrasound</td>
<td>vs. ultrasound</td>
<td>Changes after 12 weeks.</td>
<td>Significant improvement (p = 0.0002) No difference between groups for grip strength, manual provocative test. 6/8 (75%) of exercise group vs. 3/9 (33%) of US group became able to work.</td>
</tr>
<tr>
<td>Pienimäki</td>
<td>1998</td>
<td>RCT</td>
<td>Exercise vs. ultrasound</td>
<td>Exercise vs. ultrasound</td>
<td>VAS pain at rest, Isokinetic torque</td>
<td>Exercise superior to ultrasound.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>as above. Mean 36 months follow-up.</td>
<td>as above. Mean 36 months follow-up.</td>
<td>Changes after 36 months.</td>
<td>Significant improvement (p = 0.004) Exercise superior to ultrasound.</td>
</tr>
</tbody>
</table>

Exercise vs. Other Treatments

Coombes 2013: N = 165 with unilateral lateral epicondylgia of at least 6 weeks duration. No recent injections. Saline injection vs. corticosteroid injection at greatest tender point. (Triamcinolone 10mg plus 1mL 1% lignocaine). vs. physiotherapy (PT) plus saline injection vs. PT plus corticosteroid injection. PT 8x30-minute sessions plus HEP (2 times aday). Manipulation, concentric/eccentric, gripping, latex band exercises. Follow-ups at 4, 8, 12, 26, and 52 weeks.

Glucocorticoid injections superior at 4 weeks (worse pain, resting pain, pain and disability and quality of life). At 1 year, corticosteroid injections associated with less complete recovery or much improvement (68/82 (83%) vs. 7881 (96%), RR = 0.86, NNT = -7.5, p = 0.01). Greater recurrences (54% vs. 12%, NNT = -2.4, p<0.001). No differences between PT and no PT at 1 year with 91% vs. 88%, p = 0.25 complete recovery or much improvement.

"Among patients with chronic unilateral lateral epicondylalgia, the use of corticosteroid injection vs. placebo injection resulted in worse clinical outcomes after 1 year, and physiotherapy did not result in a significant difference."
Exercise as Co-Intervention

<table>
<thead>
<tr>
<th>Study</th>
<th>Duration</th>
<th>Participants</th>
<th>Intervention</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newcomer 2004 RCT</td>
<td>9.5 weeks</td>
<td>N = 39 with lateral epicondylitis (lateral elbow tenderness or extensor mass tenderness plus pain with resisted finger or wrist extensor testing) of under 4 weeks duration</td>
<td>Rehabilitation program in both arms (ice massage TID 5 times a day; wrist stretching, concentric/eccentric strengthening of wrist extensors and flexors, 3 sets of 10 reps presumably daily) plus betamethasone 6mg plus 4mL 0.25% bupivacaine hydrochloride vs. 5mL bupivacaine. Injections given to most tender point, hit bone, withdrawn slightly and then injected; 6 months follow-up.</td>
<td>Mean decrease in pain with grasp (baseline-4 weeks/8 weeks/6 months); injection (0.79/0.82/1.85) vs. placebo (0.56/1.12/1.56) (NS). Multiple other outcomes measures also NS, with sole exception of VAS pain scale between 8 weeks and 6 months favoring steroid injection (p <0.05).</td>
</tr>
<tr>
<td>Strujs 2004 RCT</td>
<td>7.0 weeks</td>
<td>N = 180 with lateral epicondylitis (lateral elbow pain, aggravated with both epicondylar pressure and resisted wrist dorsiflexion) for at least 6 weeks.</td>
<td>Brace-only treatment (Velcro strap, Epipoint, daytime use continuously) vs. physical therapy (9 total sessions: 7.5min ultrasound (Binder BMJ 85), friction massage 5-10min, progressive exercise program, HEP 2 times a day) vs. brace plus physical therapy for 6 weeks. 26 weeks follow-up.</td>
<td>No differences in success between groups. Mean±SD patient satisfaction comparing group A (PT) vs. group B (Brace) vs. group C (Combination): After 6 weeks: 75±20 vs. 66±26 vs. 77±19; p (A-B) <0.05; P (B-C) <0.05. Pressure pain after 6 weeks: 17±37 vs. 22±33 vs. 30±30; p (A-C) <0.05.</td>
</tr>
</tbody>
</table>

Follow-up report of above study

exercise vs. 55% ultrasound; 0% exercise retired vs. 18% ultrasound (though noted to be other than epicondylitis-related). Surgeries in 6% exercise vs. 36% ultrasound.

ultrasound treatment in terms of pain alleviation and working ability... Exercise may be able to prevent chronicity and should hence be tried and recommended.

superior to US for longer term results, however dropout rate considerable, somewhat limited strength of conclusions.
<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>N</th>
<th>Description</th>
<th>Intervention</th>
<th>Follow-up</th>
<th>Outcome Measures</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smidt 2002</td>
<td>6.5</td>
<td>185</td>
<td>with lateral epicondylitis (pain in lateral elbow, increased pain with epicondylar pressure and resisted wrist dorsiflexion)</td>
<td>Wait and see (avoid provocative activities, ergonomic advice, paracetamol) vs. injection (1mL triamcinolone acetonide (10mg/mL) and 1mL lidocaine 2%; up to 3 injections) vs. physiotherapy (9 sessions of pulsed ultrasound, 2W/cm² for 7.5 minutes per session; deep friction massage, exercise program); 52 weeks follow-up</td>
<td></td>
<td>Main complaint improvement (3/6/12/26/52 weeks); wait and see (6±14/21±32/33±30/47±30/53±28) vs. injection (43±28/46±30/37±30/36±34/44±32) vs. physiotherapy (11±18/26±28/43±31/5±31/59±25). At 6/52 weeks success rates for injections were 92%/69%, physiotherapy 47%/91%, and wait and see 32%/83% (all NS).</td>
<td>“The decision to treat with physiotherapy or to adopt a wait-and-see policy might depend on available resources, since the relative gain of physiotherapy is small.”</td>
</tr>
<tr>
<td>Langen-Pieters 2003</td>
<td>4.0</td>
<td>13</td>
<td>not described; mostly chronic and subacute</td>
<td>Chiropractic care [manipulation of elbow (posterior to anterior glide of radial head in pronation, medial to lateral and lateral to medial glide of humeroulnar and humeroradial joint and long-axis distraction of elbow), stretching, strengthening exercises] vs. ultrasound (3MHz, 1.5W/cm² for 5 minutes). Average 2 treatments a week for 6 weeks; 6 weeks follow-up.</td>
<td></td>
<td>VAS pain scales (pre/3 weeks/post): chiropractic care (5.2±2.3/2.7±1.5/2.3±1.5) vs. US (3.5±1.0/2.6±1.5/0.7±0.6; p = 0.25, 0.72, 0.03), Pain free function (p = 0.041) also favored US.</td>
<td>“Continuous ultrasound is more effective than chiropractic care in reducing pain and improving PFF (pain free function) in lateral epicondylitis, but that chiropractic care is equally effective in improving grip strength. Combined therapy approach would be of most benefit.”</td>
</tr>
</tbody>
</table>

Pilot study; short-term follow-up; small sample size; low power; no placebo control. Manipulation combined with stretching and strengthening precludes assessing effect of manipulation alone; 1 “complete recovery.” Conclusion that combined therapy approach most beneficial not supportable by evidence. Data suggest ultrasound
Evidence for the Use of Heat or Cold Packs for Lateral Epicondylalgia

There is 1 moderate-quality pseudorandomized pilot trial incorporated into this analysis.

<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manias 2006</td>
<td>4.0</td>
<td>N = 40 patients over 18 years with lateral elbow pain and clinically diagnosed with lateral elbow tendinopathy (lateral elbow pain, less pain with resisted supination at 90° flexion rather than extension, and pain in at least 2 of Tomsen, resisted MF, Mill’s and handgrip dynamometer tests). Duration at least 4 weeks.</td>
<td>Exercise programme (slow progressive eccentric exercises of wrist extensors and static stretching exercises of ECRB tendon, 3 sets of 10 reps) plus ice after exercise programme for 10 minutes (n = 20) vs. exercise programme alone (n = 20) for 4 weeks; 3 months follow-up.</td>
<td>Pain over prior 24 hours (baseline/4 weeks/16 weeks): exercise plus ice (8.60/1.70/1.50) vs. exercise alone (8.80/1.90/1.60), NS. No differences between groups for changes in pain.</td>
<td>“An exercise programme consisting of eccentric and static stretching exercises had reduced the pain in patients with LET at the end of the treatment and at the follow up whether or not ice was included.”</td>
<td>Pseudorandomized as every other allocation. Study did not assess ice alone. Ice did not appear effective as additive treatment.</td>
</tr>
</tbody>
</table>

Evidence for the Use of Iontophoresis for Lateral Epicondylalgia

There are 6 moderate-quality RCTs incorporated into this analysis.

<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nirschl 2003 RCT</td>
<td>7.5</td>
<td>N = 199 with medial or lateral epicondylitis under 3 months duration; diagnostic criteria not described.</td>
<td>Iontophoresis with 2.5 ml dexamethasone sodium phosphate 0.4% injection vs. 2.5 ml saline solution. Both treatments at 40 mA-minutes, 6 treatments over 15 days; 1-month follow-up.</td>
<td>Dexamethasone favored over placebo VAS pain improvement at 1 month (23 vs. 14, p = 0.012) and percentage global evaluation by investigator moderate or better (52 vs. 33, p = 0.013). Investigators’ pain evaluation score (p = 0.019) and investigators’ tenderness score (p <0.001) also favored Iontophoresis with dexamethasone. Number of patients with improvement in all 3 primary efficacy variables significantly favored</td>
<td>Iontophoresis treatment was well tolerated by most patients and was effective in reducing symptoms of epicondylitis at short-term follow-up.</td>
<td>Confounders addressed: gender, age, symptom duration, prior treatments, and prior medications. Unknown how many patients had medial epicondylitis, but assume relatively few and no stratified analyses. Free to use other treatment modalities after 2-day follow-up visit. Patients who completed all 6 treatments in 10 days or less showed better results than those performed with less than complete compliance.</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Duration</td>
<td>Patients</td>
<td>Treatment</td>
<td>Outcome</td>
<td>Conclusion</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>Vecchini 1984</td>
<td>RCT</td>
<td>6.0</td>
<td>N = 24 with untreated scapula-humeral periartthritis (12) or elbow epicondylitis (12). Duration unclear, but likely mostly acute pain patients.</td>
<td>Ionization with diclofenac vs. saline; 20 daily treatments. No follow-up beyond day 20.</td>
<td>Pain at rest moderate plus severe (pre/post): diclofenac 8/10 (80%)/0/10(0%) vs. placebo 8/13 (61.5%)/7/13 (53.8%). Good or excellent overall physician judgment of results in diclofenac 9/10 (90%) vs. placebo 2/13 (15.4%).</td>
<td>The results of this study demonstrate that the ionization procedure per se had a moderate therapeutic effect in our patients with epicondylitis and scapulo-humeral periartthritis, particularly with regard to pain on movement and functional impairment. Sparse details. Results suggest diclofenac efficacious. Intensive treatment regimen of 20 daily sessions.</td>
</tr>
<tr>
<td>Baskurt 2003</td>
<td>RCT</td>
<td>6.0</td>
<td>N = 61 with lateral epicondylitis (diagnostic criteria and duration not stated)</td>
<td>Naproxen gel (10%) by phonophoresis given through Pagani Ultrasound (1MHz, 1W/cm²) vs. naproxen gel (10%) given via Pagani Galvanic (0.08-0.004mA/cm²). Both groups treated with cold, strengthening and stretching exercises. Average approximately 20 sessions each group. Average duration of follow-up 4.5±1.8 months.</td>
<td>VAS pain scores (pre/post): phonophoresis (3.62±2.73/1.12±1.18) vs. iontophoresis (3.15±2.45/0.72±1.85). Grip strength measures also improved, but no differences between groups. Pain severity decreased/grip strength increased, neither statistically significant when compared with pretreatment (p >0.05). Nirshl-Petterone Scoring System scores compared before and after also not significant (p >0.05).</td>
<td>Results suggest that iontophoresis and phonophoresis of naproxen are equally effective electrotherapy methods in the treatment of lateral epicondylitis. Multiple co-interventions. Many treatment sessions applied and varied considerably weaken conclusions considerably. Confounders addressed: age, gender and occupation. No placebo group and natural history is improvement, thus possible interpretation is also that both treatments are equally ineffective.</td>
</tr>
<tr>
<td>Saggini 1996</td>
<td>RCT</td>
<td>4.5</td>
<td>N = 60 with various conditions (12 epicondylitis, 30 scapulo-humeral periartthritis, 10 gonalgia, 8 metatarsalgia)</td>
<td>Iontophoresis with 30mg of ketorolac in 5mL of distilled water vs. placebo QOD for 20 minutes for 5 treatments</td>
<td>VAS pain scale (pre/post/7 days): ketorolac (6.55±2.14/4.22±2.51/2.74±2.53) vs. placebo (5.89±2.33/3.88±2.12/4.12±2.45). More had no improvement with placebo (p <0.04) and intermediate results (p <0.02) vs. ketorolac while more good results with ketorolac (p <0.007).</td>
<td>This study demonstrates that ketorolac relieves pain when delivered by EMDA and offers longer-lasting pain relief than does placebo. Study included many disorders and no stratified results. Randomization was only briefly discussed and there were limited statistics to compare treatment and placebo group. Results suggest ketorolac by iontophoresis superior to placebo.</td>
</tr>
</tbody>
</table>
There are 2 low-quality RCTs (219, 244) in Appendix 2.

Iontophoresis vs. Other Active Treatment

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runeson 2002</td>
<td>RCT</td>
<td>4.5</td>
<td>N = 64 with lateral epicondylalgia (pain on palpation of lateral epicondyle, resisted wrist extension, middle-finger test and vigorimeter test). Pain of at least 1 month, mostly chronic.</td>
<td>Iontophoresis with 0.4% dexamethasone sodium phosphate vs. placebo. 4 treatments over 2 weeks; 6 months follow-up.</td>
<td>No difference between 4 tests after 4 treatments. Both groups improved and most patients reported "completely recovered" [placebo 14/21 (66.7%) vs. dexamethasone sodium phosphate 12/20 (60%) NS].</td>
<td>"[N]o significant difference concerning the pain-relieving effect could be observed between the corticosteroid group and the placebo group. However, an identical improvement was observed in both groups throughout the study."</td>
<td>High rate of changing to other treatments at 3 months 35.9% (23/64). Confounders addressed age, sex, affected arm, duration of pain, cause of pain, and previous treatment. Male dominance in group that completed study. Data suggest iontophoresis with dexamethasone not efficacious.</td>
</tr>
<tr>
<td>Demirtas 1998</td>
<td>RCT</td>
<td>5.5</td>
<td>N = 40 with subacute and chronic lateral epicondylitis</td>
<td>Infrared treatment (250W, 20 minutes) after either iontophoresis 6-11mA (individual tolerance) with sodium diclofenac vs. sodium salicylate 2%. Daily treatments, 5 days a week, up to 18 days. Seven days follow-up.</td>
<td>Pain scores after treatment were 0/3 score for diclofenac (18/20, 90%) vs. salicylate (11/20, 55%), p <0.05. Significant reductions in pain for both groups for many measures (e.g., pain scores produced by pressure) resisted wrist extension, function, and spontaneous pain at rest). Sodium diclofenac had less pain produced by lateral epicondylar pressure (p<0.05) and pain on resisted wrist extension (p<0.01).</td>
<td>"The results suggest some benefits from the process of iontophoresis and the use of infrared in the treatment of lateral epicondylitis and indicate that iontophoresis of sodium diclofenac is more effective than that of sodium salicylate."</td>
<td>No placebo group. Both groups received IR, precluding assessment of value of IR. Short-term follow-up only. Intensive treatment regimen. Data suggest iontophoresis with diclofenac superior to sodium salicylate.</td>
</tr>
</tbody>
</table>

Evidence for the Use of Ultrasound for Lateral Epicondylalgia

There are 2 high- and 10 moderate-quality RCTs incorporated into this analysis. There are 2 low-quality RCTs(219, 244) in Appendix 2.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haker 1991</td>
<td>RCT</td>
<td>8.5</td>
<td>N = 45 with lateral epicondylalgia (lateral elbow pain, tenderness on palpation)</td>
<td>Pulsed ultrasound (1MHz, 1:4, 1W/cm²) vs. sham. Each session 10 minutes, 2-3 times a week; 10 total treatments; 12</td>
<td>There were no significant differences in relation to subjective or objective outcomes between the groups after the treatment period or at the follow-ups. No differences in "Our results do not support the use of pulsed ultrasound treatment with the chosen parameters in lateral epicondylalgia."</td>
<td>Some results sparse. Confounders addressed profession, pain onset, pain at night and at rest, pain character; time of</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>N</td>
<td>Age</td>
<td>Gender</td>
<td>Duration</td>
<td>Treatment</td>
<td>Follow-up</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---</td>
<td>-----</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>D’Vaz</td>
<td>2006</td>
<td>55</td>
<td>30-50</td>
<td>Male</td>
<td>6 weeks</td>
<td>Pulsed ultrasound (30mW/cm²) vs. sham</td>
<td>12 weeks</td>
</tr>
<tr>
<td>Lundeberg</td>
<td>1988</td>
<td>99</td>
<td>30-50</td>
<td>Female</td>
<td>6 weeks</td>
<td>Ultrasound (1.0MHz, 1.0W/cm²) plus rest vs. Sham ultrasound plus rest vs. Rest only; 10 treatments, 2 times a week over 5 to 6 weeks.</td>
<td>6 weeks</td>
</tr>
<tr>
<td>Binder</td>
<td>1985</td>
<td>76</td>
<td>30-50</td>
<td>Male</td>
<td>6 weeks</td>
<td>Pulsed ultrasound (1.0MHz, 1-2W/cm²) vs. placebo; 5-10 minutes sessions, 12 sessions over 4 to 6 weeks; 8 weeks follow-up.</td>
<td>8 weeks</td>
</tr>
</tbody>
</table>

Notes:
- D’Vaz 2006: N = 55 with lateral epicondylitis at least 6 weeks duration
- Lundeberg 1988: N = 99 with epicondylalgia
- Binder 1985: N = 76 with lateral epicondylitis

Selection bias.
- Confounders addressed: gender, age, arm affected, time since onset of current episode, previous management. Highly intensive, daily treatment though with pulsed low-intensity US, which did not appear effective.

Some details sparse.
- Confounders addressed: symptom duration on entry, dominance of affected arm, and treatment given before referral. Data suggest US plus rest or rest ineffective.

In this study LIUS was no more effective for a large treatment effect than placebo for recalcitrant LE. This is in keeping with other interventional studies for the condition.”

A significant improvement was noted when the effect of continuous ultrasound was compared with rest, but continuous ultrasound treatment was not significantly better than placebo ultrasound.”

Usual ultrasound enhances recovery in patients with lateral epicondylitis but in only 63% of cases. By serial assessment of clinical variables we were able to confirm that the rate of recovery was significantly better in treated patients than the placebo group, and later review suggested a lower incidence of recurrence in the patients who responded to Ultrasound.”

References:
- Lundeberg 1988
- D’Vaz 2006
- Binder 1985

Note:
- Data suggest US superior to sham.
Ultrasound vs. Other Active Treatment

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment Details</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klaiman 1998 RCT</td>
<td>N = 49 with epicondylitis, tendinitis (bicipital, supraspinatus, Achilles, Patellar), tenosynovitis (de Quervains), plantar fasciitis</td>
<td>Phonophoresis (gel containing 0.05% fluocinonide used as coupling agent) vs. Ultrasound (identical gel absent steroid). 1.5W/cm², 8min/session. 3 times a week for 3 weeks. 3 weeks follow-up.</td>
<td>Both groups improved after 3 weeks (p < 0.05). No differences between groups (VAS: US 5.5–1.9, PH 5.0–2.0; algometry (involved limb): US 4.7 lb–7.1 lb, PH 5.1 lb–6.6 lb). “US results in decreased pain and increased pressure tolerance in these selected soft tissue injuries. The addition of PH with fluocinonide does not augment the benefits of US used alone.” Mixed disorders. Breakdown of results by individual conditions not provided, though underpowered. Short-term follow-up. No placebo control. Without placebo/sham, both treatments equally effective or ineffective.</td>
</tr>
<tr>
<td>Öken 2008 RCT</td>
<td>N = 58 with lateral epicondylitis (lateral elbow pain, tenderness, pain on resisted wrist extension). Duration at least 1 month (means 3.5–6.2)</td>
<td>Brace (Orthocare 3125) during daytime for 2 weeks vs. ultrasound (1MHz, 1.5W/cm² for 5 minutes, 5 day/week for 2 weeks) vs. low level laser therapy (He-Ne, 632.8nm, 10mV). All performed HEP (stretching and strengthening). 6 weeks follow-up.</td>
<td>VAS pain (pre/Week 2/ Week 6): brace (8.1±1.3/ 4.8±2.6/6.7±0.9) vs. US (7.8±1.5/6.4±3.1/5.7±2.2) vs. laser (7.1±1.4/4.4±2.2/4.3±1.2), p = 0.097, 0.189, 0.067. Grip strengths: brace (43.7/46.3/36.2) vs. US (45.1/44.4/43.6) vs. laser (45.8/54.8/56.3) (all NS). “[A] brace has a shorter beneficial effect than US and laser therapy in reducing pain, and that laser therapy is more effective than the brace and US treatment in improving grip strength.” All received exercises. Co-interventions not controlled. Some trends in baseline differences with lower pain in laser group and longer duration (3.5 vs. 4.3 vs. 6.2 months). Grip strengths do not appear consistent/logical if significant pain. No placebo or non-interventional control group.</td>
</tr>
<tr>
<td>Plenimäki 1996 RCT</td>
<td>N = 39 with chronic lateral epicondylitis (required positive Mill’s test and resisted wrist and/or middle finger extension plus local tenderness) , most symptoms >3 months.</td>
<td>Exercise (PT appointment every other week with stepped slow repeated wrist and forearm stretches, muscle conditioning, occupational exercises. HEP 4–6 times a day) vs. ultrasound (0.3–0.7 W/cm², 10–15 minutes a session, 2–3 times a week) for 6 to 8 weeks treatment; 8 week follow-up.</td>
<td>VAS pain at rest changes: Exercise - 1.9±1.8 vs. US +0.2±2.6, p = 0.004. Pain under strain (p = 0.04), Working inability (p = 0.004), sleep disturbance (p = 0.01) all favored exercise. Isokinetic torque favored exercise group (p = 0.0002). No difference between groups for grip strength, manual provocative test; 6/8 (75%) of exercise group vs. 3/9 (33%) of US group became able to work. “Progressive strengthening and stretching exercise treatment is more effective than pulsed ultrasound in treating chronic lateral epicondylitis: it reduced chronic pain and improved upper limb function and the ability to work of patients in the study. It may correct the ill-effects of prolonged immobilisation, counter patients’ fear of using the forearm and hands, and help them to return to work.” Some details sparse. Data suggest exercise superior to US for chronic lateral epicondylitis. Outcomes data included return to work which differed between the groups.</td>
</tr>
</tbody>
</table>

Ultrasound as a Co-Intervention

- **US group** became able to return to work vs. 3/9 (75%) of placebo. No significant differences in HEP strength outcomes: exercise group 1.8, US 1.5, placebo 1.5. No change in exercise times: placebo 0.04, exercise and US 0.0004. Pain under strain (p = 0.04), Working inability (p = 0.004), sleep disturbance (p = 0.01) all favored exercise. Isokinetic torque favored exercise group (p = 0.0002). No difference between groups for grip strength, manual provocative test; 6/8 (75%) of exercise group vs. 3/9 (33%) of US group became able to work. “Progressive strengthening and stretching exercise treatment is more effective than pulsed ultrasound in treating chronic lateral epicondylitis: it reduced chronic pain and improved upper limb function and the ability to work of patients in the study. It may correct the ill-effects of prolonged immobilisation, counter patients’ fear of using the forearm and hands, and help them to return to work.”
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>RCT</th>
<th>N</th>
<th>Intervention Details</th>
<th>Outcome Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Struijs 2004</td>
<td>7.0</td>
<td>RCT</td>
<td>N = 180 with lateral epicondyritis (lateral elbow pain aggravated with both epicondylar pressure and resisted wrist dorsiflexion) for at least 6 weeks.</td>
<td>Brace-only (Velcro strap, Epipoint, daytime use continuously) vs. physical therapy (9 total sessions 7.5 minute ultrasound (Binder BMJ 85), friction massage 5-10 minutes, progressive exercise program, HEP 2 times a day) vs. brace plus physical therapy for 6 weeks. 26 weeks follow-up.</td>
<td>No differences in success between groups. Mean±SD patient satisfaction comparing group A (PT) vs. group B (Brace) vs. group C (Combination): After 6 weeks: 75±20 vs. 66±26 vs. 77±19; p (A-B)<0.05; P(B-C) <0.05. Pressure pain after 6 weeks: 17±37 vs. 22±33 vs. 30±30; p (A-C) <0.05. “Conflicting results were found. Brace treatment might be useful as initial therapy. Combination therapy has no additional advantage compared to physical therapy but is superior to brace only for the short term.”</td>
</tr>
<tr>
<td>Stratford 1989</td>
<td>6.5</td>
<td>RCT</td>
<td>N = 40 with lateral epicondylar pain and tenderness on palpation (ECRL, ECRB, ECRB at tendon body, ECRB plus tendon body), lateral elbow pain with resisted wrist extension and radial deviation during complete elbow extension. Average 2.1-5.4 months durations between groups.</td>
<td>Ultrasound (1.3W/cm² continuous to 5W/cm² pulsed 6 minutes) plus placebo ointment without friction massage (n = 9) vs. ultrasound plus friction massage (n = 11) vs. phonophoresis (n = 10) vs. phonophoresis plus friction massage (n = 10); 6 minutes for ultrasound, 10 minutes for friction massage 9 treatments, usually 3 a week.</td>
<td>25% each of phonophoresis and placebo groups deemed success (NS); 29% with friction massage successful vs. 21% without friction massage, p >0.05. “The results suggest that the most cost effective method of treating the lateral epicondyritis patient is by ultrasound alone.”</td>
</tr>
<tr>
<td>Smidt 2002</td>
<td>6.5</td>
<td>RCT</td>
<td>N = 185 with lateral epicondyritis (pain in lateral elbow, increased pain with epicondylar pressure</td>
<td>Wait and see (avoid provocative activities, ergonomic advice, paracetamol) vs. injection (1mL triamcinolone acetonide (10mg/mL) and 1mL lidocaine 2%; Main complaint improvement (3/6/12/26/52 weeks): wait and see (6±14/21±32/33±30/47±30/53±28)</td>
<td>Marked difference in success between phonophoresis vs. placebo. Friction massage also does not appear successful.</td>
</tr>
</tbody>
</table>

Multiple co-interventions in physical therapy. No differences over 6 months-year. Data suggest minimal short term benefit of physical therapy at 6 weeks.
<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Intervention</th>
<th>Outcome</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Struijs 2003</td>
<td>31</td>
<td>N = 31 with lateral epicondylitis (lateral elbow pain, pain aggravated with pressure on epicondyle and pain with resisted wrist extension). At least 6 weeks duration, mostly chronic.</td>
<td>Group 1: manipulation (thrust technique, wrist extension, scaphoid bone manipulated ventrally 15 times, forced passive extension of wrist or extension against resistance, 2 times a week up to 9 treatments over 6 weeks) vs. Group 2: ultrasound (7.5 minutes pulsed US, 2W/cm²) plus friction massage for 10 minutes plus stretching and strengthening exercises; 6 weeks follow-up.</td>
<td>Success rate in Group 1 (3/6 weeks) 62%/85% vs. 20%/67% (p = 0.05/0.40). After 6 weeks, improvement in pain 5.2±2.4 vs. 3.2±2.1. After 6 weeks, grip strength mean increase: Group 1 = 6.2±10.5 kg vs. 4.0±11.7 kg (NS). No change in range of motion.</td>
</tr>
<tr>
<td>Langen-Pieters 2003</td>
<td>13</td>
<td>N = 13 with lateral epicondylitis, criteria not described; mostly chronic and subacute</td>
<td>Chiropractic care [manipulation of elbow (posterior to anterior glide of radial head in pronation, medial to lateral and lateral to medial glide of humeroulnar and humeroradial joint and long-axis distraction of elbow), stretching, strengthening exercises] vs. ultrasound (3MHz, up to 3 injections) vs. physiotherapy (9 sessions of pulsed ultrasound, 2 W/cm² for 7.5 minutes per session; deep friction massage, exercise program); 52 weeks follow-up (11±18/26±28/43±31/53±31/59±25). At 6/52 weeks success rates for injections were 92%/69%, physiotherapy 47%/91%, and wait and see 32%/83% (all NS).</td>
<td>"Manipulation of the wrist appeared to be more effective than ultrasound, friction massage, and muscle stretching and strengthening exercises for the management of lateral epicondylitis and when there was a short-term follow-up. However, replication of our results is needed in a large-scale randomized clinical trial with a control group and a longer-term follow-up."</td>
</tr>
</tbody>
</table>
Evidence for the Use of Manipulation and Mobilization for Lateral Epicondylalgia

There is 1 high- and 5 moderate-quality RCTs or randomized crossover experimental studies (one with two reports) incorporated in this analysis. There are 5 low-quality RCTs (190, 255, 256, 258, 260) (Radpasand 09) in Appendix 2.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanchette 2011</td>
<td>RCT</td>
<td>4.5</td>
<td>N = 30 with confirmed lateral epicondylitis by Cozen and Mill test. Data suggest mostly chronic lateral epicondylitis.</td>
<td>Control group (n = 15) received advice about ergonomics at a computer station, flexor/extensor stretching exercises, and 1st level analgesics (e.g., generic NSAID) vs. experimental group (n = 15) with augmented soft tissue mobilization twice a week for 5 weeks.</td>
<td>Patient-Rated Tennis Elbow Evaluation (PRTEE) for control vs. experimental (baseline/6 wks/3 mos) mean ± SD (95% CI): 30 ± 18 (19-41)/25 ± 18 (13-36)/17 ± 13 (9-25) vs. 37 ± 19 (27-48)/15 ± 9 (10-20)/16 ± 10 (10-21). VAS scores: 39 ± 29 (21-58)/21 ± 18 (10-32)/21 ± 17 (8-30) vs. 46 ± 23 (33-60)/16 ± 12 (9-22)/17 ± 17 (7-26). Pain-free grip (PFG) in kg: 26 ± 15 (17-35)/28 ± 14 (19-37) vs. 25 ± 14 (18-33)/27 ± 13 (20-34).</td>
<td>“This pilot study could not establish that the use of ASTM differs from the noninterventionist approach in the treatment of LE.”</td>
<td>Controls more chronic at baseline (43±50 vs. 22±25 months), likely biases in favor of STM. Methods not well written and unclear if both groups received control group treatments. Data suggest no benefit of soft tissue mobilization.</td>
</tr>
<tr>
<td>Coombes 2013</td>
<td>RCT</td>
<td>8.0</td>
<td>N = 165 with unilateral lat. epicondylalgia of at least 6 weeks duration. No recent injections.</td>
<td>Saline injection vs. corticosteroid injection to greatest tender point (triamcinolone 10mg plus 1mL 1% lignocaine) vs. physiotherapy (PT) plus saline injection vs. PT plus corticosteroid injection. PT (8x30-minute sessions plus HEP (2 times a day). Manipulation, Glucocorticosteroid injections superior at 4 weeks (worse pain, resting pain, pain and disability and quality of life). At 1 year, corticosteroid injections associated with less complete recovery or much improvement (68/82 (83%) vs. 7881 (96%), RR = “Among patients with chronic unilateral lateral epicondylalgia, the use of corticosteroid injection vs. placebo injection resulted in worse clinical outcomes after 1 year, and physiotherapy did not result in any significant difference.”</td>
<td>Mostly chronic LE (>6weeks). Blinding to injection type, not PT. Less resting pain in corticosteroid injection only group at baseline. Uncontrolled NSAID use. PT individualized, precluding detailed assessments; 71-73% of patients guessed the injection type.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bisset 2006, 2009 RCT

<table>
<thead>
<tr>
<th>N = 198 with tennis elbow; at least 6 weeks duration</th>
<th>Pain-free grip ratio at 3/6 weeks injection (vs. wait and see) favorable with 42.0 (32.6 to 51.3) vs. 36.4 (26.5 to 46.3), (mean (95% CI)). At 26/52 weeks wait and see favorable with -19.6 (-33.0 to -6.2)/-12.1 (-23.6 to 0.3). At 6 weeks physiotherapy favorable over wait and see 20.1 (10.3 to 30.0), but at 52 weeks less favorable at 4.3 (-7.5 to 16.2). Injection favored over physiotherapy at 3/6 weeks with 31.2 (22.2 to 40.2)/16.3 (6.6 to 26.0), but at 26/52 weeks physiotherapy favorable with -30.1 (-43.1 to -17.2)/-16.4 (-27.9 to -4.8). Assessor severity rating at 3/6 weeks injection favorable over wait and see at 35.9 (28.3 to 43.4)/29.9 (22.2 to 37.7), but at 26/52 weeks wait and see favorable -17.5 (-26.2 to -8.9)/-8.3 (-15.2 to -1.3). Physiotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wait and see vs. injection (1ml quantity of 1% lidocaine with 10mg of triamcinolone acetonide in 1ml) vs. physiotherapy (elbow manipulation and therapeutic exercise, 8 treatments of 30 minutes plus HEP including resistant band over 6 weeks). All received information booklet and "practical advice."</td>
<td>"Physiotherapy combining elbow manipulation and exercise has a superior benefit to wait and see in the first six weeks and to corticosteroid injections after six weeks, providing a reasonable alternative to injections in the mid to long term. The significant short term benefits of corticosteroid injection are paradoxically reversed after six weeks, with high recurrence rates, implying that this treatment should be used with caution in the management of tennis elbow."</td>
</tr>
<tr>
<td>7.0</td>
<td>Correctly, suggesting some unblinding. Data suggest short term efficacy of injection, but long-term worse results and no efficacy of PT.</td>
</tr>
</tbody>
</table>

Confounders addressed include removal of participants who did not adhere to protocol, assessment of non-protocol treatment, blinding (had assessor guess at end of study and conducted post-hoc analyses). Data suggest injections most successful short-term. Wait and see and physiotherapy equivalent at 1 year.
<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Duration</th>
<th>Intervention</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vicenzino 2001 Randomized crossover experimental study</td>
<td>6.0</td>
<td>N = 24 with chronic lateral epicondylalgia. Tenderness, pain on hand dynamometer use, pain on resisted wrist extensor contraction or ECRB or stretching or extensor muscles. At least 6 weeks duration, mean 8 months.</td>
<td>Lateral glide mobilization vs. sham vs. no manual contact. 6 repetitions of manipulation with 15s rest interval between reps; pre/post experimental study</td>
<td>Overall favorable over wait and see at 3/52 weeks 9.8 (2.3 to 17.3)/5.1 (-1.9 to 15.2). Injection at 3/6 weeks favorable over physiotherapy 26.1 (18.7 to 33.4)/15.0 (7.2 to 22.6), but at 26/52 weeks physiotherapy favorable -25.7 (-34.4 to -17.1)/-13.3 (-20.4 to -6.3). Mean (99% CI).</td>
</tr>
<tr>
<td>Struijs 2003 RCT</td>
<td>4.5</td>
<td>N = 31 with lateral epicondylitis (lateral elbow pain, pain aggravated with pressure on epicondyle and pain with resisted wrist extension). At least 6 weeks duration, mostly chronic.</td>
<td>Group 1: Manipulation (thrust technique, wrist extension, scaphoid bone manipulated ventrally 15 times, forced passive extension of wrist or extension against resistance, 2 a week up to 9 treatments over 6 weeks) vs. Group 2: ultrasound (7.5 minutes pulsed US, 2W/cm²) plus friction massage for 10 minutes plus stretching and strengthening exercises; 6 weeks follow-up.</td>
<td>Success rate in Group 1 (3/6weeks) 62%/85% vs. 20%/67% (p = 0.05/0.40). After 6 weeks, improvement in pain was 5.2±2.4 vs. 3.2±2.1. After 6 weeks, grip strength mean increase: Group 1 = 6.2 ±10.5kg vs.4.0±11.7kg (NS). No change in range of motion.</td>
</tr>
</tbody>
</table>
Evidence for the Use of Massage and Friction Massage for Lateral Epicondylalgia

There are 4 moderate-quality RCTs incorporated into this analysis. There is 1 low-quality RCT(193) in Appendix 2.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Score</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langen-Pieters 2003 RCT</td>
<td>4.0</td>
<td>N = 13 with lateral epicondylitis, criteria not described; mostly chronic and subacute</td>
<td>Chiropractic care [manipulation of elbow (posterior to anterior glide of radial head in pronation, medial to lateral and medial to anterior glide of humeroulnar and humeroradial joint and long-axis distraction of elbow), stretching, strengthening exercises] vs. ultrasound (3MHz, 1.5W/cm² for 5 minutes). Average 2 treatments a week for 6 weeks; 6 weeks follow-up.</td>
<td>VAS pain scales (pre/3 week/post): chiropractic care (5.2±2.3/2.7±1.5/2.3±1.5) vs. US (3.8±1.0/2.6±1.5/0.7±0.6; p = 0.52, 0.72, 0.03). Pain free function (p = 0.041) also favored US.</td>
<td>"Continuous ultrasound is more effective than chiropractic care in reducing pain and improving PFF (pain free function) in lateral epicondylitis, but that chiropractic care is equally effective in improving grip strength. Combined therapy approach would be of most benefit."</td>
<td>Pilot study. Short-term follow up. Small sample size. Low power. No placebo control. Manipulation combined with stretching and strengthening precludes assessing the effect of manipulation alone; 1 with "complete recovery." Conclusion that combined therapy approach most beneficial is not supportable by presented evidence. Data suggest ultrasound superior.</td>
</tr>
<tr>
<td>Struijs 2004 RCT</td>
<td>7.0</td>
<td>N = 180 with lateral epicondylitis (lateral elbow pain aggravated with both epicondylar pressure and resisted wrist dorsiflexion) for at least 6 weeks.</td>
<td>Brace-only treatment (Velcro strap, Epipoint, daytime use continuously) vs. physical therapy (9 total sessions: 7.5 min ultrasound (Binder BMJ 85), friction massage 5-10 minutes, progressive exercise program, HEP 2x/day) vs. brace plus physical therapy for 6 weeks. 26 weeks follow-up.</td>
<td>No difference in success between groups. Mean±SD patient satisfaction Group A (PT) vs. Group B (brace) vs. Group C (combination): after 6 weeks: 75±20 vs. 66±26 vs. 77±19; p (A-B) <0.05; P (B-C) <0.05. Pressure pain after 6 weeks 17±37 vs. 22±33 vs. 30±30; p (A-C) <0.05.</td>
<td>"Conflicting results were found. Brace treatment might be useful as initial therapy. Combination therapy has no additional advantage compared to physical therapy but is superior to brace only for the short term."</td>
<td>Multiple co-interventions in physical therapy. No differences over 6 months-year. Data suggest minimal short term benefit of physical therapy at 6 weeks.</td>
</tr>
<tr>
<td>Stratford 1989 RCT</td>
<td>6.5 for phonophoresis 4.5 for friction massage</td>
<td>N = 40 with lateral epicondylar pain and tenderness on palpation (ECRL, ECRB, ECRB at tendon body,</td>
<td>Ultrasound (1.3W/cm² continuous to 5W/cm² pulsed for 6 min) plus placebo ointment without friction massage (n = 9) vs. ultrasound plus friction massage (n = 11)</td>
<td>25% each of phonophoresis and placebo groups deemed success (NS); 29% with friction massage successful vs. 21% without friction massage, p >0.05.</td>
<td>"The results suggest that the most cost effective method of treating the lateral epicondylitis patient is by ultrasound alone."</td>
<td>Small groups. Score based on hydrocortisone vs. placebo. Other interventions not blinded. Marked differences in durations at baseline between</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>N</td>
<td>Diagnoses</td>
<td>Interventions</td>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---</td>
<td>-----------</td>
<td>---------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Smidt 2002</td>
<td>RCT</td>
<td>6.5</td>
<td>N = 185 with lateral epicondylitis (pain in lateral elbow, increased pain with epicondylar pressure and resisted wrist dorsiflexion) subacute and chronic pain</td>
<td>ECRB plus tendon body, lateral elbow pain with resisted wrist extension/ radial deviation during complete elbow extension. Average 2.1-5.4 months durations between groups. vs. phonophoresis (n = 10) vs. phonophoresis plus friction massage (n = 10); 6 minutes for ultrasound, 10 minutes for friction massage 9 treatments, usually 3 a week.</td>
<td>Wait and see (avoid provocative activities, ergonomic advice, paracetamol) vs. injection (1 mL triamcinolone acetonide (10 mg/mL) and 1 mL lidocaine 2%; up to 3 injections) vs. physiotherapy (9 sessions of pulsed ultrasound, 2 W/cm² for 7.5 minutes/session; deep friction massage, exercise program); 52 weeks follow-up. Main complaint improvement (3/6/12/26/52 weeks): wait and see (6±14/21±32/33±30/47±30/53±28) vs. injection (43±28/46±30/37±30/36±34/44±32) vs. physiotherapy (11±18/26±28/43±31/53±31/59±25). At 6/52 weeks success rates for injections 92%/69%, physiotherapy 47%/91%, and wait and see 32%/83% (all NS).</td>
<td></td>
</tr>
<tr>
<td>Struijs 2003</td>
<td>RCT</td>
<td>4.5</td>
<td>N = 31 with lateral epicondylitis (lateral elbow pain, pain aggravated with pressure on epicondyle and pain)</td>
<td>Group 1: Manipulation (thrust technique, wrist extension, scaphoid bone manipulated ventrally 15 times, forced passive extension of wrist or extension against resistance, 2 a week up to 9 treatments Success rate in Group 1 (3/6weeks) 62%/85% vs. 20%/67% (p = 0.05/0.40). After 6 weeks, improvement in pain was 5.2±2.4 vs. 3.2±2.1. After 6 weeks, grip strength mean increase: Group 1 = 6.2 “Manipulation of the wrist appeared to be more effective than ultrasound, friction massage, and muscle stretching and strengthening exercises for the management of...”</td>
<td>“The decision to treat with physiotherapy or to adopt a wait-and-see policy might depend on available resources, since the relative gain of physiotherapy is small.”</td>
<td>Large sample size. Physiotherapy group with mixed interventions. Confounders addressed age, gender, duration of current episode, dominant elbow affected, acute onset, concomitant neck disorders, previous lateral elbow pain episodes, putative cause, use of analgesics past week. Data suggest wait and see not different from physiotherapy, but trends towards physiotherapy. Data suggest injections superior in short term, then trends to be inferior. Pilot study; small sample; short-term follow-up. Comparison group had multiple co-interventions. Confounders addressed age, complaint duration, pain...</td>
</tr>
</tbody>
</table>
Evidence for the Use of Magnets for Lateral Epicondylalgia

There is 1 moderate-quality pseudorandomized clinical trial incorporated into this analysis.

<table>
<thead>
<tr>
<th>Author/Year Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uzunca 2007</td>
<td>6.0 for PEMF</td>
<td>N = 60 with lateral elbow and forearm pain; duration more than 6 weeks</td>
<td>Group I: Pulsed electromagnetic field (Group I magnetherapy, BTL-09, 66mT/session, 25/4.6 Hz frequency, 30 minute sessions, 5 times a week 3 weeks) vs. placebo (sham, Group II) vs. methylprednisolone acetate 40mg plus prilocaine HCl 20mg/1mL (into most tender point, Group III). Follow-up “after 3 months.”</td>
<td>Rest pain VAS (pre/post/3 months): Group I (3.43±2.56/1.05±1.69/0.09±0.44) vs. Group II (3.39±2.08/1.95±1.75/1.79±1.93) vs. Group III (4.02±2.05/0.50±0.69/1.40±2.09). All improved. Statistical results between groups not presented.</td>
<td>“[P]atients treated with PEMF had lower pain levels during rest, activity, and nighttime when compared with patients treated with corticosteroid injections after 3 months, although pain during resisted wrist dorsiflexion and forearm supination maneuvers and algometric values were not different.”</td>
<td>Pseudo-randomization by sequence in clinic. Durations differed at baseline (4.1 vs. 2.4 vs. 3.4 months) concerning for randomization failure. Blinding methods unclear. Score for PEMF vs. sham (score for injection 5.0). Highly intensive treatment regimen. Between group results not presented with data tables, qualitatively described as mostly negative.</td>
</tr>
</tbody>
</table>

Evidence for the Use of Extracorporeal Shockwave Therapy for Lateral Epicondylalgia

There are 3 high- and 8 moderate-quality RCTs incorporated into this analysis. There are 4 low-quality RCTs(268, 270, 271, 285) (Rompe 01) in Appendix 2.

<table>
<thead>
<tr>
<th>Author/Year Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chung 2004</td>
<td>9.5</td>
<td>N = 60 with untreated lateral</td>
<td>Extracorporeal shockwave therapy (2000)</td>
<td>Treatment Group: VAS (cm) Overall pain at 0 weeks</td>
<td>“Despite improvement in pain scores and pain-free maximum</td>
<td>Excluded workers compensation.</td>
</tr>
<tr>
<td>RCT</td>
<td>epicondylitis, 3 weeks-1 year duration</td>
<td>pulses of 0.03-0.17mJ/mm² in each session for 3 sessions) vs. sham extracorporeal shockwave therapy. Both groups treated with forearm stretching; 8 weeks follow-up.</td>
<td>median score (m) = 3.2, interquartile range (IR) 2.1-5.0 and at 8 weeks m=2.5, IR 1.4-4.8. Max pain-free grip strength (kg) at 0 weeks m = 23.4, IR 15.6-37.9, at 8 weeks m = 32.0, IR 24.0-45.8. Placebo Group: VAS (cm) Overall pain at 0 weeks m = 3.9, IR 2.1-4.9, at 8 weeks m = 2.0, IR 1.0-3.2. Max pain-free grip strength (kg) at 0 weeks m = 24.7, IR 14.7-36.0, at 8 weeks m = 30.0, IR 22.0-39.5.</td>
<td>grip strength within groups, there does not appear to be a meaningful difference between treating lateral epicondylitis with extracorporeal shock wave therapy combined with forearm-stretching program and treating with forearm-stretching program alone, with respect to resolving pain within an 8-week period of commencing treatment.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staples 2008</td>
<td>N = 68 with lateral elbow pain and 2+ signs of tenderness over epicondyle or extensor origin, resisted wrist extension and static stretching of pronated wrist in palmar flexion. Duration at least 6 weeks.</td>
<td>Extracorporeal shock wave therapy (2,000 shocks a week) vs. sham (200 shocks a week, <0.03mJ/mm²); 3 treatments a week for 3 weeks; 6 months follow-up.</td>
<td>Pain Index changes from baseline (6 weeks/3 months/6 months): ESWT (27.7/26.1/31.7) vs. sham (26.0/26.7/40.7), p = 0.31. No difference between groups at 6-week, 3-month, and 6-month follow-up for Pain Index, Function Index, Dash Function Score, Dash work and sport Score, Pain-Free Grip, Max Grip, and 8-item pain free function index.</td>
<td>*“There were no clinically meaningful differences between the ESWT and placebo groups at any of the follow-up time points for any of the measured outcome variables.”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haake 2002</td>
<td>N = 272 with chronic lateral epicondylitis (at least 2 positive clinical tests, Roles and Maudsley score of 3 or 4, refractory to at least 3 injections, 10+ physiotherapy treatments</td>
<td>Extracorporeal shockwave therapy (2000 pulses of 007-0.09mJ/mm²) vs. sham ESWT. Three weekly treatments. Local anesthesia with 3mL 1% mepivacaine and NSAID post treatment. 12 months follow-up.</td>
<td>Failures in ESWT 74.2% vs. sham 74.6% (NS). At the primary end point (12 weeks) 25.8% ESWT vs. 25.4% sham reported success (p = 1.00). Odds ratio for success of ESWT 1.02 (0.55-1.89). No differences at 12 months.</td>
<td>*“Extracorporeal shock wave therapy as applied in the present study was ineffective in the treatment of lateral epicondylitis. The previously reported success of this therapy appears to be attributable to inappropriate study designs. Different application protocols might improve clinical outcome. We recommend that extracorporeal shock wave therapy be applied only in high-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and at least 10 individual treatments with physical forms of therapy) quality clinical trials until it is proved to be effective.” steroidal anti-inflammatory drugs. After study began, device used for measure-ments changed, but presumably non-differential impacts. Some co-interventions. Data suggest lack of efficacy.

| Petrone 2005 RCT | 7.5 | N = 114 with chronic lateral epicondylitis at least 6 months duration. | Extracorporeal shockwave therapy (2000 pulses at 0.06mJ/mm² directed to maximal tenderness) vs. sham. Three weekly treatments; 12 weeks follow-up, then allowed crossover; 12 months total follow-up. | Pain (baseline/12 weeks): ESWT (74±15.8/37.6±28.7) vs. sham (75.6±16.0/51.3±29.7), p = 0.02. Function scale: ESWT (4.7±1.8/2.3±1.6) vs. sham (4.6±1.8/3.2±2.1), p = 0.01. Activity score and overall impression superior in ESWT. Grip strength trended (71±26.3/87.1±10 vs. 72.5±29.5/81.5±32.5, p = 0.09) Cross over patients had less pain. “[L]ow-dose shock wave therapy without anesthetic is a safe and effective treatment for chronic lateral epicondylitis.” Data suggest ESWT improved most outcomes. Confounders addressed: age, race, gender, body habitus, affected arm, chronicity of pain, medical diagnoses, and prior treatments.

| Rompe 2004 RCT | 7.5 | N = 78 with chronic lateral epicondylitis (at least 2 clinical signs, increased signal intensity of extensors on MRI, at least 3 injections, at least 10 individual treatments with physical forms of treatment, at least 4/10 VAS pain) of at least 12 months duration. | Extracorporeal shockwave therapy (2000 pulses of 0.09mJ/mm² focused at maximal tenderness) vs. sham. Article describes multiple adjustments to focusing in ESWT group but not controls; three weekly treatments. | Mean pain scores (baseline/3 months/12 months): ESWT (7.1±1.4/3.6±2.1/3.1±2.4) vs. sham (7.1±1.6/5.12±1.5/2.3) 3 months. Difference 1.6 points (95% CI: 0.6-2.5; p = 0.001); at 12 months difference 1.3 points (95% CI: 0.2-2.3; p = 0.019). At 3 months 25/38 (65.8%) vs. 11/40 (27.5%) sham, p = 0.001. At 12 months, 23/38 (60.5%) ESWT vs. 15/40 (37.5%) sham had 50% reduction, p = 0.0692. Grip strengths not different. Upper extremity function scale ESWT (50.3±7.9/26.9±14.9/9.9. “Low-energy extracorporeal shock wave treatment as applied is superior to sham treatment for tennis elbow.” Included only recreational tennis players. Confounders addressed age, gender, height, weight, duration of symptoms, MRI diagnosis, previous treatment. Selection/treatment bias. Patients not matched for activity level before treatment. Patients allowed to continue wearing braces already in use. Adverse effects reported included temporary reddening, pain, nausea. May
NYS WCB MTG – Elbow Disorders

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Design</th>
<th>Sample Size</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcome Measures</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed 2002 RCT</td>
<td>7.0</td>
<td>N= 75 with chronic lateral epicondylitis (tenderness over lateral epicondyle at/near insertion plus pain reproduced with resisted MF extension) of at least 3 month duration</td>
<td>Extracorporeal shockwave therapy (1500 pulses at 0.18mJ/mm²) vs. sham extracorporeal shockwave therapy focuses on maximal tenderness point. One monthly treatment for 3 months; 3months follow-up.</td>
<td>Patients with at least 50% pain improvement in 35% ESWT vs. 34% sham (NS). At least 50% improvement in night pain in 30% ESWT vs. 43% sham (NS). VAS pain scores (baseline/3months): ESWT (73.4/47.9) vs. sham (67.2/51.5) (p<0.001 compared with baseline, but NS between groups).</td>
<td>"There appears to be a significant placebo effect of moderate dose ESWT in subjects with lateral epicondylitis but there is no evidence of added benefit of treatment when compared to sham therapy."</td>
<td>Modest-sized groups. Confounders addressed age, gender, weight, arm dominance, symptom duration, prior treatment. Baseline differences with more prior injections in ESWT (72.5% vs. 48.6%); unclear significance, possible bias against ESWT. No long-term follow-up or functional measures. Data suggest lack of efficacy.</td>
<td></td>
</tr>
<tr>
<td>Spacca 2005 RCT</td>
<td>7.0</td>
<td>N=62 with tennis elbow >10 mos.</td>
<td>Four weekly sessions of 2000 impulses/session (n=31) vs. four weekly sessions of 20 impulses/session (n=31). Follow-ups were at 0/6 months.</td>
<td>Median pain at rest score (VAS) comparing study group vs. control group: Before treatment 4.5 vs. 4.5; p=0.0635. After treatment 0.5 vs. 5; p<0.001. At follow up 0.5 vs. 6.5; p<0.001.</td>
<td>"The use of RSWT allowed a decrease of pain, and functional impairment, and an increase of the painfree grip strength test, in patients with tennis elbow. The RSWT is safe and effective and must be considered as possible therapy for the treatment of patients with tennis elbow."</td>
<td>Chronic pain. Blinding not well described. Data suggest efficacy.</td>
<td></td>
</tr>
<tr>
<td>Ozturan 2010 RCT</td>
<td>4.0</td>
<td>N=60 diagnosed with lateral epicondylitis for at least 6 months. Follow-ups at 4, 12, 26, 52 wks.</td>
<td>All groups initially prilocaine 1mL to skin and SQ. Group 1 (CS) methylprednisolone acetate (1 mL) with 5 skin penetrations at tender point (n=20) vs. group 2 (AB) 2mL</td>
<td>At 4 weeks CS superior functional score vs. other groups (p<0.001). At 52 weeks, AB and ESWT improved vs. CS (p<0.001). For Thomsen Provocation Test, only difference at 4 wks and CS favored over both</td>
<td>"Corticosteroid injection provided a high success rate in short term. However, (AB) injection and (ESWT) gave better long-term results, especially considering the high recurrence rate with (CS). We suggest that the More heavy work in CS>AB>ESWT. CS dose not provided. Data suggest ESWT and AB comparable, and both superior to CS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>N (Comments)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rompe 1996 RCT</td>
<td>4.0</td>
<td>N = 115 with chronic tennis elbow (at least 2 positive tests: palpation of epicondyle, resisted wrist extension, resisted finger extension, chair lift test; unsuccessful conservative therapy prior 6 months) of at least 12 months duration. Extracorporeal shockwave therapy (1000 pulses of 0.08mJ/mm²) vs. ESWT (10 pulses) focused on lateral epicondyle. Three weekly treatment sessions; 24 weeks follow-up. Night pain (baseline/after treatment week 0/3 week/6 week/24 week): ESWT (32.5 ±17.3/34.6±15.8/13.2 ± 9.9/7.7±8.8/7.3±8.7) vs. very low dose ESWT (29.9±15.6/31.2±16.0 /34.6±17.6/35.1±18.1/ 32.7±17.4), p <0.001 for weeks 3, 6 and 24. ESWT group scored better in night pain, resting pain, pressure pain, Thomasen test, finger extension, and chair test all (p <0.001). “There was significant alleviation of pain and improvement of function after treatment in group I in which there was a good or excellent outcome in 48% and an acceptable result in 42% at the final review, compared with 6% and 24%, respectively, in group II. Our success with this new method of treatment warrants further study of the most efficient method of its use and the mechanism of its influence on pain.” Randomization process not described. Minimal baseline data. Loss to follow up of 15 participants not addressed. No intent to treat analysis. Control group received low-dose treatment (30 pulses), thus treatment duration likely shorter and attention bias probable. If data not substantially biased, suggest efficacy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mehra 2003 RCT</td>
<td>4.0</td>
<td>N = 47, 24 with tennis elbow and 23 with plantar fasciitis. Mean duration 11 months (minimum for eligibility not stated). All failed 1 or more conservative treatments (“conservative, topical NSAIDs, steroid injection and/or surgery”). ESWT (mobile lithotripter) vs. Sham treatment (application of a clasp). Three treatments at 2 week intervals. Local injection with 3-5mL lignocaine. 6 months follow-up. Treatment group mean score decreased 6.6 to 3.0 (no SDs provided) at 6 months vs. sham from 6.6 to 6.2. ESWT 10 patients (78%) with significant improvement, 1 no improvement, 2 increased pain vs. sham 1 significant improvement; 10 no change. States statistical significance, but no p value. “The mobile lithotripter is an effective way of treating tennis elbow and plantar fasciitis but warrants further larger studies.” Mixed study included tennis elbow and plantar fasciitis. Scant baseline or results data. Data variance not provided. Unable to address baseline comparability of groups. Study both states failure of conservative treatment, but appears to have allowed post-op patients to enroll. Confounders addressed age, gender, duration of symptoms,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ESWT vs. Other Treatments

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Score</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radwan</td>
<td>2008</td>
<td>6.0</td>
<td>N = 56 with lateral epicondylitis (pain with palpation, resisted wrist extension, chair test) with failure of conservative treatment (NSAIDs, corticosteroid injections, PT, exercise, brace). Duration at least 6 months.</td>
<td>Extracorporeal shock wave (1500 shots at 18kV, 0.22mJ/mm²) vs. percutaneous release of extensor origin (Grundberg Clin Orthop 2000; 376:137). 12 months follow-up.</td>
<td>At 12 weeks, at least 50% improvement in Thomsen score in ESWT 21/29 (72.4%) vs. tenotomy 23/27 (85.2%). At 12 months, at least 80% improvement in Thomsen score in ESWT 14/29 (48.3%) vs. tenotomy 17/27 (63.0%).</td>
<td>“ESWT appears to be a useful noninvasive treatment method that reduces the necessity for surgical procedures.”</td>
<td>Data suggest equal efficacy. May be underpowered for Thomsen scores.</td>
</tr>
</tbody>
</table>

Evidence for the Use of Phonophoresis for Lateral Epicondylalgia

There are 4 moderate-quality RCTs incorporated into this analysis. There is 1 low-quality RCT (219) in Appendix 2.

<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klaiman 1998 RCT</td>
<td>6.5</td>
<td>N = 49 with epicondylitis, tendinitis (bicipital, supraspinatus, Achilles, Patellar), tenosynovitis (de Quervain’s), plantar fasciitis</td>
<td>Phonophoresis (gel containing 0.05% fluocinonide used as coupling agent) vs. Ultrasound (identical gel absent steroid), 1.5W/cm², 8 minutes a session, 3 times a week for 3 weeks. 3 weeks follow-up.</td>
<td>Both groups improved after 3 weeks (p <0.05). No differences between groups (VAS: US 5.5-1.9, PH 5.0-2.0; algometry (involved limb): US 4.7 lb-7.1 lb, PH 5.1 lb-6.6 lb).</td>
<td>“US results in decreased pain and increased pressure tolerance in these selected soft tissue injuries. The addition of PH with fluocinonide does not augment the benefits of US used alone.”</td>
<td>Mixed disorders included. Breakdown results by individual conditions not provided, also underpowered. Short-term follow-up. No placebo control. Without placebo/sham, both treatments equally effective or ineffective.</td>
</tr>
<tr>
<td>Stratford 1989 RCT</td>
<td>6.5 for phonophoresis</td>
<td>N = 40 with lateral epicondylitis pain and tenderness on palpation (ECRL, ECRB), 25% each of phonophoresis and placebo groups deemed success (NS); 29% with friction massage successful vs. 21% without</td>
<td>Ultrasound (1.3W/cm² continuous to 5W/cm² pulsed 6 minutes) plus placebo ointment without friction massage (n = 9) vs. ultrasound</td>
<td>The results suggest that the most cost effective method of treating the lateral epicondylitis patient is by ultrasound</td>
<td>Small groups; score based on hydrocortisone vs. placebo. Other interventions not blinded. Marked differences in durations at baseline between</td>
<td></td>
</tr>
</tbody>
</table>
Baskurt 2003

| 6.0 | N = 61 with lateral epicondylitis (diagnostic criteria and duration not stated) | Naproxen gel (10%) by phonophoresis vs. Pagani Ultrasound (1mHz, 1W/cm²) vs. naproxen gel (10%) given via Pagani Galvanic (0.08-0.004mA/cm²). Both groups treated with cold, strengthening and stretching exercises. Average approximately 20 sessions each group. Average duration of follow-up 4.5±1.8 months. | VAS pain scores (pre/post): phonophoresis (3.62±2.73/1.12±1.18) vs. iontophoresis (3.15±2.45/0.72±1.85). Grip strength measures also improved, but no differences between groups. Pain severity decreased and grip strength increased, but neither statistically significant when compared with pre-treatment (p>0.05). Nirshl-Petterone Scoring System scores compared before and after also not significant (p>0.05). | “Results suggest that iontophoresis and phonophoresis of naproxen are equally effective electrotherapy methods in the treatment of lateral epicondylitis.” | Multiple co-interventions. Many treatment sessions applied and varied considerably weaken conclusions considerably. Confounders addressed: age, gender and occupation. No placebo group and natural history is improvement, thus possible interpretation is also that both treatments are equally ineffective. | Nagrale 2009

| 4.0 | N=60 with clinically identified teno-periosteal variety of lateral | Control treatment of phonophoresis with diclofenac gel for 5 min on lateral epicondyle and also participated in supervised | Baseline-4 week change: VAS (mean, 95%CI): group A 5.63(5.31, 5.95) vs. group B 3.83 (3.52, 4.14), | “The results of this study demonstrate that Cyriax physiotherapy is a superior treatment” | Does not specify how patients were randomized. |
Exercise 3 times a week for 8 weeks (group A, n=30) vs. 10 minutes of deep transverse friction massage followed by one application of Mill's manipulation, 3 times a week for 8 weeks (group B, n=30).

Baseline - 8 weeks change:
- VAS (mean, 95%CI): group A 5.03 (4.62, 5.44) vs. group B 2.50 (2.12, 2.87), p=0.000; Pain-Free Grip: group A 28.80 (27.21, 30.38) vs. group B 16.40 (15.07, 17.72), p=0.000.

Function (Measured with Tennis Elbow Function Scale 0-40):
- group A 24.60 (23.41, 25.78) vs. group B 16.83 (15.70, 17.96), p=0.000.

Evidence for the Use of Low-Level Laser Therapy for Lateral Epicondylalgia

There is 1 high- and 12 moderate-quality RCTs incorporated into this analysis. There are 2 low-quality RCT(292, 303) (Emanet 10) in Appendix 2.

<table>
<thead>
<tr>
<th>Author/Years</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasseljen Scand J Rehabil Med 1992 RCT</td>
<td>8.0</td>
<td>N = 30 with subacute and chronic lateral epicondylitis, duration 1-12 months</td>
<td>Laser treatment (GaAs, 904nm, 800Hz, 175ns, 1.5mW) vs. sham, 3 times a week, 8 treatments total; 5-6 months follow-up.</td>
<td>Patient's judgment of progress (end of treatment/4 weeks): much better/no pain Laser [3/15 (20%)/7/15 (46.7%)] vs. sham [0/15(0%)/3/15(20%)]. Identical numbers worse at all times (13.3%). VAS pre/post favored laser (p = 0.024), but overall modest benefit (see Figure); no approach compared to phonophoresis and exercise in managing lateral epicondylalgia.</td>
<td>"Active laser does not have a significant effect on tennis elbow with regards to decreased pain measured VAS, increased grip strength measured by the ability to lift free weights...however, as a sole treatment for lateral epicondylitis it is of limited value."</td>
<td>Laser group appears to be same group used for below study comparing with another arm (physiotherapy). This suggests these are 2 reports of 1 trial with 3 treatment arms; however this is not clearly described in this report. Small sample sizes. Tendency towards more patients on sick leave at baseline.</td>
</tr>
<tr>
<td>Study</td>
<td>Duration</td>
<td>Participants</td>
<td>Intervention</td>
<td>Outcome</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Basford 2000 RCT</td>
<td>7.0</td>
<td>N=52 with lateral epicondylitis (criteria unclear) of at least 4 weeks duration</td>
<td>Laser treatment (1.06-µm Nd:YAG) vs. placebo. 7 sites irradiated for 60s each. 12 sessions. All self-treated with ice massage, friction massage, wrist extensor stretching. 60 days follow-up.</td>
<td>No significant differences were found in pain, maximal tenderness on palpation, overall change, grip strength, pinch strength, pin with grasp and pain with pinch.</td>
<td>“Treatment with low intensity 1.06-microm laser irradiation within the parameters of this study was a safe but ineffective treatment of lateral epicondylitis. Further research seems warranted in this controversial area.”</td>
<td></td>
</tr>
<tr>
<td>Krasheninnikoff 1994 RCT</td>
<td>6.5</td>
<td>N = 48 with lateral epicondylitis (tender to palpation and/or tender points in forearm extensor muscles with aggravation with forced extension of hand) of at least 4 weeks duration.</td>
<td>Laser treatment (Ga-Al-As, 30mW/830nm, 3.6J/point) vs. sham. Targeted tender points of lateral epicondyle and forearm extensors. Treatments 2/week, 8 total; 10 weeks follow-up.</td>
<td>No pain post/10weeks in laser 2/18 (11.1%)/6/18(33%) vs. sham 3/18(16.7%)/6/18(33%) (NS). No differences in pain ratings, VAS, dynamic muscle test, tender points at any time.</td>
<td>“[L]ow power laser offers no advantage over placebo in the treatment of musculoskeletal pain as lateral epicondylitis.”</td>
<td></td>
</tr>
<tr>
<td>Haker 1990 RCT</td>
<td>6.5</td>
<td>N = 49 with lateral epicondylitis (at least 2 tests positive, palpation, resisted wrist extension, passive stretching, resisted finger extension); duration at least 1 month.</td>
<td>Laser treatment (Ga-As 904 nm, mean power output 12 mW, peak value 8.3 W, and frequency 70 Hz) vs. sham. Applications to acupuncture sites LI 10, 11, 12; Lu5, SJ5, for 30s/point, 0.36J/point. 2-3 times a week, total 10 treatments. 12 month follow-up.</td>
<td>Excellent or good results after treatments in laser 5/23 (21.7%) vs. 12/26 (46.2%) sham. No statistical difference was observed between the laser group and the placebo group in relation to the subjective and objective outcome after 10 treatments.</td>
<td>“Results do not support the use of laser treatment with the chosen parameters.”</td>
<td></td>
</tr>
<tr>
<td>Haker Arch Phys Med Rehabil</td>
<td>6.5</td>
<td>N = 58 with lateral epicondylitis</td>
<td>Laser treatment (Ga-As, 904nm, 4mW, peak</td>
<td>No differences in multiple measures (pain, resisted</td>
<td>“Our results do not support the use of Space Mid Laser”</td>
<td>No significant baseline differences other than gender (p</td>
</tr>
<tr>
<td>Year</td>
<td>Study</td>
<td>Design</td>
<td>Patient Characteristics</td>
<td>Treatment Details</td>
<td>Outcomes</td>
<td>Comments</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>1991</td>
<td>RCT</td>
<td>6.0</td>
<td>N = 49 with lateral epicondylitis (at least 2 tests positive, palpation, resisted wrist extension, passive stretching, resisted finger extension); duration at least 1 month.</td>
<td>Laser treatment (Ga-As, 904nm, mean power 12mW, peak power 8.3W, 70Hz, pulse train 8000Hz) vs. sham. Applications to acupuncture sites LI11, LI12 for 2 min/point; 3-4 times a week, total 10 treatments; 12 months follow-up.</td>
<td>Apparently negative results for pain ratings (data not provided). Vigorimeter results in kPa (baseline/post/3 months/1 year): laser (38/25/40/48) vs. sham (39/0/12/46), p <0.01 at post and 3 months, but NS at other times. (Explanation for 0 value not provided/not logical). Middle finger test, lifting 3 and 4 kg and vigorimeter all favored laser at posttreatment evaluation. At 3 months, only lifting 3 kg and vigorimeter favored laser and none significant at 12 months.</td>
<td>"Patients suffering from lateral epicondylalgia who were treated with Irradia laser obtained a more significant improvement in objective measurements than patients treated with placebo laser." "Low energy laser may be a valuable therapy in lateral epicondylalgia if carried out as described."</td>
</tr>
<tr>
<td>1987</td>
<td>RCT</td>
<td>4.5</td>
<td>N = 57 with tennis elbow (pain, point tenderness over lateral epicondyle, aggravation by resisted wrist dorsiflexion, middle finger extension)</td>
<td>Laser (Ga-As, 904nm, 0.07mW, 73Hz) vs. Laser (He-Ne, 632.8nm, 1.56mW) vs. placebo. Treatments to acupuncture points (Li10, 11, 12; Sj5, 10; Si4, 8; H3, 4; P3), 2/week for 5-6 weeks, 10 total</td>
<td>Satisfactory outcomes in 6 He-Ne, 7 Ga-As and 6 placebo (NS). Mean VAS improvements: placebo 2.2±0.2 vs. He-Ne 2.4±0.2 vs. Ga-As 2.6±0.2. No differences in pain with resisted wrist dorsiflexion, pain on weight test and "[L]aser treatment is not significantly better than placebo in treating tennis elbow."</td>
<td>Minimal demographics provided. Minimal quantitative results. Members of the 2 groups had a similar pretreatment condition. Results given as positive, but quantitative data suggest no long term efficacy.</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Design</td>
<td>N</td>
<td>Conditions</td>
<td>Intervention</td>
<td>Outcomes</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>---</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Papadopoulos 1996</td>
<td>RCT</td>
<td>40</td>
<td>N = 29 with 31 cases of tennis elbow.</td>
<td>N = 30 with cases of lateral condylalgia confined to the extensor carpi radialis brevis</td>
<td>Laser (Ga-Al-As, 820nm, 50mW, 0.4W/cm², 5KHz, pulse duration 160ns) vs. placebo to most tender point; 3 treatments a week for 2 weeks.</td>
<td>VAS pain scores lower at 3rd and 7th sessions for placebo group (p = 0.032 and p = 0.045 respectively).</td>
</tr>
<tr>
<td>Vasseljen Physiotherapy 1992</td>
<td>RCT</td>
<td>7.5</td>
<td>N = 30 with lateral epicondylalgia confined to the extensor carpi radialis brevis</td>
<td>Laser treatment (GaAs, 904nm, 880Hz, 175ns, 1.5mW) vs. physiotherapy (pulsed ultrasound plus deep friction massage), 3x/week, 8 treatments total; 5-6 months follow-up.</td>
<td>VAS scores decreased more with physiotherapy (5.1 to 1.8, interpretation of graphic data) vs. laser (4.2 to 2.8), p <0.01.</td>
<td>Low-level laser therapy as well as combined physiotherapeutic method of pulsed ultrasound and deep friction massage does have a significant effect on the symptoms of tennis elbow, both on subjective and objective assessments. In the treatment of tennis elbow, low-level laser therapy was no better than a traditional physiotherapeutic approach of deep friction massage and pulsed ultrasound.</td>
</tr>
<tr>
<td>Stergioulas 2007</td>
<td>RCT</td>
<td>6.0</td>
<td>N = 50 with lateral epicondylitis (tenderness, pain on resisted wrist extension, passive wrist extensor muscle stretch, passive extension of middle finger); duration at least 5 weeks</td>
<td>Plyometric exercise plus either low level laser therapy (Ga-As 904nm, 50Hz, 40mW, 2.4J/cm²) vs. placebo (sham) laser therapy, 2 sessions a week for weeks 1-4 then 1 a week; 12 total sessions; 8 weeks follow-up.</td>
<td>Pain at rest (pre/8 week/16 weeks): laser (6.95±9.81/3.41±6.26/1.61±3.30) vs. sham (6.10±8.43/4.75±7.63/2.93±3.11). At 8-week follow-up, LLLT had better range of motion (p <0.01), grip strength (p <0.01), and free weight elevation (p <0.005) vs. placebo.</td>
<td>[A] combination of a 904 nm, 40 mW at 60Hz, 2.4J/cm² laser, along with plyometric exercises and stretching is more effective than placebo laser and exercise in the treatment of patients with LE.”</td>
</tr>
</tbody>
</table>

Limited data. Some methods sparse, but double-blinded. Data suggest lack of efficacy.
<table>
<thead>
<tr>
<th>Study</th>
<th>Duration</th>
<th>Participants</th>
<th>Interventions</th>
<th>Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Öken 2008 RCT</td>
<td>5.5 weeks</td>
<td>N = 58 with lateral epicondylitis (lateral elbow pain, tenderness, pain on resisted wrist extension). Duration at least 1mo (means 3.5-6.2).</td>
<td>Brace (Orthocare 3125) during daytime for 2 weeks vs. ultrasound (1MHz, 1.5W/cm² for 5 minutes, 5 days a week for 2 weeks) vs. low level laser therapy (He-Ne, 632.8nm, 10mV). All performed HEP (stretching and strengthening); 6 weeks follow-up.</td>
<td>VAS pain (pre/Week 2/Week 6): brace (8.1±1.3/4.8±2.6/6.7±0.9) vs. US (7.8±1.5/6.4±3.1/5.7±2.2) vs. laser (7.1±1.4/4.4±2.4/3±1.2), p = 0.097, 0.189, 0.067. Grip strengths: brace (43.7/46.3/36.2) vs. US (45.1/44.4/43.6) vs. laser (45.8/54.8/56.3) (all NS).</td>
<td>“[A] brace has a shorter beneficial effect than US and laser therapy in reducing pain, and that laser therapy is more effective than the brace and US treatment in improving grip strength.”</td>
</tr>
<tr>
<td>Lam 2007 RCT</td>
<td>4.0 weeks</td>
<td>N = 39 with pain over the lateral epicondyle, tenderness, pain with resisted middle finger extension, and pain with passive stretch of extensor muscle group. No dropouts.</td>
<td>Standard exercise program (stretch and strengthen) for all, including HEP. Low level laser therapy (Ga-As, 904nm, 25mW, pulse duration 200ns, 4.0mm diameter, 0.275J/tender point) vs. sham. 9 sessions. 6 week follow-up.</td>
<td>Work DASH (baseline/session 5/9/3 weeks): Laser (42.2±22.0/33.46±22.05/25.05±16.99/14.74±13.04) vs. placebo (41.8±20.62/36.69±18.86/34.79±18.81/27.38±17.22), p = 0.96/0.45/0.11/0.017. Laser group had greater mechanical pain threshold (p <0.001 at 3 weeks), maximum grip strength (p = 0.011), and VAS score (p = 0.000) at 3 weeks.</td>
<td>“LLLT demonstrated significantly greater analgesic effects than did placebo irradiation in terms of mechanical pain threshold and VAS.”</td>
</tr>
</tbody>
</table>

All received exercises. Co-interventions not controlled. Some trends in baseline differences with lower pain in laser group and longer duration (3.5 vs. 4.3 vs. 6.2mo). Grip strengths do not appear entirely consistent/logical if significant pain. No placebo or non-interventional control group.

Randomization method unclear (states draw lots, non-replacement, but groups unequal in size). Trends towards worse status at baseline in sham group. Blinding methods not well described. Study includes exercise program for all, thus attempts to address additive benefit. No intermediate or longer follow-up.
<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fink 2002 a,b RCT</td>
<td>6.0</td>
<td>N = 45 with chronic lateral epicondylitis (lateral elbow pain, aggravated by overhand gripping or arm exertion, epicondylar tenderness, aggravation during resisted wrist extension and middle finger test) at least 3 months duration</td>
<td>Acupuncture (6 needles, LI 4,10, 11; L5, Sj5, Ah-Shi over muscle origin of lateral extensor group, mechanically stimulated, de qi, 25 min needle placement) vs. sham acupuncture (6 needles, non-acupuncture points at least 5cm away from classical points otherwise same as other treatment arm); 2 treatments a week for 10 treatments; 1 year follow-up.</td>
<td>At 2 weeks, reduced pain on motion (-43.3% vs. -13.7%, p = 0.001) and pain on exertion (-41.8% vs. -17.9%, p = 0.007) in favor of real acupuncture. Pain on exertion decreased 4.09±0.83 to 0.54±0.78 in real acupuncture vs. 4.05±0.83 to 1.07±1.44 in sham at 1 year (NS). No outcomes significant other than at 2 weeks other than DASH which also was different at 2 months (p <0.05).</td>
<td>"Results suggest that, in the treatment of chronic epicondylitis, the selection of so-called real acupuncture points gives better results than invasive sham acupuncture at early follow-up. This additional effect can be interpreted as a specific effect of real acupuncture…. The treatment of epicondylitis with acupuncture might be a useful alternative to classical…"</td>
<td>Two reports of 1 trial. Modest sample sizes. No non-invasive group. Confounders addressed age, gender, disease duration. Unclear if a specific effect of the selection and stimulation of specific acupuncture points as insertion of a needle at any site can alleviate pain. Stimulation of true acupuncture points may have produced some attention bias, with bias in favor of that group. No objective...</td>
</tr>
</tbody>
</table>

Evidence for the Use of Acupuncture for Lateral Epicondylalgia

There are 6 moderate-quality RCTs (one with two reports) incorporated into this analysis. There is 1 low-quality RCT in Appendix 2.(313) (Tsui 02)
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>N</th>
<th>Diagnosis</th>
<th>Methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haker et al.</td>
<td>1990</td>
<td>86</td>
<td>N = 86 with lateral elbow pain and 2+ of: tenderness over lateral epicondyle, resisted wrist extension, passive extensor stretching, resisted finger extension. Duration at least 1 month</td>
<td>Deep vs. superficial acupuncture (subcutaneous only). L10, 11, 12, L15, SJ5. Only deep were manually stimulated, de qi Q5 min in 20 min period. 10 treatments.</td>
<td>Vigorimeter results in kPa (pre/post/3 months/12 months): deep (32/32/47/62) vs. superficial (33/10/37/55), p < 0.05 at post only, others NS.</td>
</tr>
<tr>
<td>Molsberger et al.</td>
<td>1994</td>
<td>48</td>
<td>N = 48 with mostly chronic tennis elbow (diagnostic criteria unclear) at least 2 months duration</td>
<td>Acupuncture verum [GB34 (distal site on lower extremity), de qi] vs. placebo [UB13 (thoracic vertebra), not inserted but stimulated]. One treatment. 3 days follow-up.</td>
<td>Mean pain relief in verum group 55.8% ± 2.95 vs. placebo 15%±2.77. After treatment, 19/24 (79.2%) verum reported at least 50% pain relief vs. 6/24 (25%), p < 0.01. Mean duration pain relief verum 20.2 ± 21.54 vs. 1.4±3.50 hour, p < 0.01.</td>
</tr>
<tr>
<td>Yong et al.</td>
<td>1998</td>
<td>93</td>
<td>N = 93 with acute lateral epicondylitis (diagnostic criteria not stated). Duration range 1-27 days</td>
<td>Floating acupuncture (FA, targets tender point, no needle stimulation or de qi, needle taped in place for 1-2 days, then 1 day without needling but with 1 finger massage 10 minutes, then</td>
<td>Response to one treatment favored floating acupuncture (complete relief 81.5% vs. 22.2%, p < 0.01). At 10 days, complete recovery in 100% floating vs. 91.2% routine.</td>
</tr>
</tbody>
</table>

Acupuncture vs. Other Type of Acupuncture

- Study evaluates unique type of acupuncture (“Fu’s”), with proponent (Dr. Fu) as an author. Needle retained for 1-2 days, and treatments daily thus practicality questionable.
- Baseline demographic data between groups not provided. Sparse results, data/some methods sparse. Manual stimulation of needles may produce attention bias. Minimal, short-term benefit of deep vs. superficial acupuncture that did not last 3 months. However, positive results seem to be driven by decline in function at post-treatment which is not explained.
- Ability to blind/sham dubious. Short-term follow-up of 72 hours for 1 treatment, thus data not usable for evidence-based treatment guidance.
apparently cycle repeated though not clearly stated) vs. routine acupuncture (RA, LI11, SI9, SJ5, electrostimulated for 20 minutes, daily for 6 days, then rest day, then another cycle).

<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johannsen 1993 Randomized crossover</td>
<td>8.0</td>
<td>N = 16 with chronic lateral epicondylitis (pain and/or tenderness, aggravation with</td>
<td>Rebox (0-300µA, 0-20V, 200-5,000Hz) vs. sham (same box de-</td>
<td>Graphic data presented. Grip strengths, pain at elevation reportedly better with active</td>
<td>“We found a significant effect of Rebox compared to</td>
<td>Relatively small sample size. Targeted racket sports clubs. Electrical current</td>
</tr>
</tbody>
</table>
Evidence for the Use of Glucocorticosteroid Injections for Lateral Epicondylalgia

There are 6 high- and 15 moderate-quality RCTs or pseudorandomized controlled trials (one with two reports) incorporated into this analysis. There are 3 low-quality RCTs(179, 244, 321) in Appendix 2.

<table>
<thead>
<tr>
<th>Author/Yea</th>
<th>Score</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krogh 2013</td>
<td>9.0</td>
<td>N = 60 with lateral epicondylitis for at least 3 months. No injections in past 3 months. Also used ultrasound for diagnosis and follow.</td>
<td>Tramcinolon [sic] 40mg plus lidocaine (GC) vs. Saline (NS) vs. Platelet Rich Plasma injections (from 27mL whole blood, concentrated and buffered), US-guided injections. PRP and saline peppering technique (~7tendon injx). GC injection only at deepest aspect common tendon origin. Follow-up at 4 weeks, 3, 6, and 12 months.</td>
<td>Changes in pain from baseline (PRP/NS/GC) at 1 month: -0.5/-1.7/-9.8. At 3 months: -6.6/-3.3/-7.1. Disability change at 1 month (PRP/NS/GC): -5.2/-3.4/-21.9. Disability at 3 months: -16.6/-7.6/-13.8. No differences between groups in ultrasound Doppler findings, or tendon thickness.</td>
<td>"Neither injection of PRP nor glucocorticoid was superior to saline with regard to pain reduction in LE at the primary end point at 3 months. However, injection of glucocorticoid had a short-term pain-reducing effect at 1 month in contrast to the other therapies."</td>
<td>Some baseline differences, especially more chronic in GC group, presumably biases against GC efficacy. Three month endpoint after which high dropouts and intended to do 12 month study, but 12 month data compromised with the dropouts. Data suggest GC superior and only in 4 week timeframe.</td>
</tr>
<tr>
<td>Coombes 2013</td>
<td>8.0</td>
<td>N = 165 with unilateral lateral epicondylalgia of at least 6 weeks duration. No recent injections.</td>
<td>Saline injection vs. corticosteroid injection to greatest tender point (triamcinolone 10mg plus 1mL 1% lignocaine) vs. physiotherapy (PT) plus saline injection vs. PT plus corticosteroid injection. PT [8 x 30-minute</td>
<td>Glucocorticosteroid injections superior at 4 weeks (worse pain, resting pain, pain and disability and quality of life). At 1 year, corticosteroid injections associated with less complete recovery or much improvement (68/82 (83%) vs. 7881 (96%), RR = 0.86, NNT = -7.5, p = 0.01). Greater</td>
<td>"Among patients with chronic unilateral lateral epicondylalgia, the use of corticosteroid injection vs. placebo injection resulted in worse clinical outcomes after 1 year, and physiotherapy did not result in any significant difference."</td>
<td>Mostly chronic LE (>6weeks). Blinding to injection type, not PT. Less resting pain in corticosteroid injection only group at baseline. Uncontrolled NSAID use. PT individualized, precluding detailed assessments; 71-73% of patients</td>
</tr>
<tr>
<td>Study</td>
<td>N</td>
<td>Duration</td>
<td>Intervention</td>
<td>Outcome</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>----------</td>
<td>--------------</td>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Lindenhouvis 2008 RCT</td>
<td>8.0</td>
<td>N = 64 recruited, 48 finished follow-up</td>
<td>Dexamethasone 4mg plus lidocaine 1% (2mL total) vs lidocaine 1% 2mL injection. Injected to site of maximal tenderness and “multiple needle redirections.” 6 reinjections of steroid (2 dex vs. 4 placebo); 6 months follow-up.</td>
<td>DASH scores (pre/1 month/6 months): Dex (31/24/18) vs placebo (29/27/13), (p = 0.72). VAS scores Dex (5.8±4.7/3.7/2.4) vs. placebo (4.6±2.0/4.3/1.7), (p = 0.42). Grip strength based on percentage not different (p = 0.57).</td>
<td>Study aim to assess differences in disability at 6 months. Data suggest a modest trend in favor of injection at 1 month, but no meaningful differences at 6 months.</td>
<td></td>
</tr>
<tr>
<td>Hay 1999 RCT</td>
<td>7.5</td>
<td>N = 164 with lateral epicondylitis (pain and tenderness and pain on resisted isometric wrist extensor contraction) No treatment prior 12 months. Duration unclear, with approx 1/3 chronic.</td>
<td>Naproxen 500mg BID for 2 weeks vs. placebo (unmarked vitamin C) BID 2 weeks) vs. methylprednisolone 20mg plus 0.5 mL 1% lignocaine injection 1cm distal to lateral epicondyle towards tender point; 12 months follow-up.</td>
<td>Percentages better (pain score ≤3) (4 weeks/6 months/12 months): injection (82/65/84) vs. naproxen (48/81/85) vs placebo (50/83/82). Injection superior at 4 weeks (p <0.0001). Naproxen or placebo vs. injection slightly favored at 6/12 months.</td>
<td>“Early local corticosteroid injection is effective for lateral epicondylitis. Outcome at one year was good in all groups, and effective early treatment does not seem to influence this.”</td>
<td></td>
</tr>
<tr>
<td>Lewis 2005 RCT Same study as Hay 99 above</td>
<td>7.5</td>
<td>N = 164 (same as above)</td>
<td>Injection (20mg methylprednisolone plus 0.5 mL 1% lignocaine) 1cm distal to epicondyle towards most tender point vs. naproxen (200mg BID) vs. placebo; 5-day duration of observation.</td>
<td>Naproxen and injection groups both improved by day 3 (p <0.01). Injection improved better than other 2 groups over 5 days, (p <0.05).</td>
<td>This report of above trial was for only first 5 days compared with entire 1-year trial. Patients not blinded to treatment allocation. Data suggest injection and NSAID superior to placebo for ultra-short term follow-</td>
<td></td>
</tr>
</tbody>
</table>

NYS WCB MTG – Elbow Disorders
Price 1991

RCT

7.0	N = 145 with lateral epicondylitis (pain on gripping or extensor test plus tender over lateral epicondyle or adjacent tissues); mostly chronic pain
Study 1: Injection of 2mL of 1% lignocaine alone vs. with either triamcinolone 10mg or hydrocortisone 25mg. Study 2: lignocaine plus triamcinolone 10mg vs. 20mg. 24 weeks follow-up.	Study 1: VAS pain (0/4/8/24 weeks): lignocaine (50/46/ 35/12) vs. hydrocortisone (49/28/30/ 24) vs. triamcinolone (47/17/ 20/18). Pain weighted grip strength (mmHg): lignocaine (151/184/ 201/251) vs. hydrocortisone (135/ 203/200/237) vs. triamcinolone (158/ 231/238/238). Lignocaine recovered later (p <0.05). Study 2: VAS pain (0/3/8/24 weeks): 10mg (66/27/ 29/35) vs. 20mg (63/ 28/22/ 33). Pain-weighted grip-strength 10mg (133/ 228/211/217) vs. 20mg (103/200/196/ 193) (NS).
N = 120 with lateral epicondylitis (lateral elbow pain, tenderness over extensor origin, positive Mills' sign and positive chair test)	Pain scoring system used (excellent, good, fair, or poor). Patients evaluated at 2, 6, and 12 months. No difference between groups.
Apparently most or all chronic pain	”Both groups had excellent results and because the injection of local anesthetics is known to have no long-term effect in the treatment of lateral epicondylitis, the peppering technique seems to be a reliable method of treatment.”
Injection of 1mL triamcinolone with 1mL lidocaine vs. injection of 2mL of lidocaine alone. Dose not provided. Used peppering injection technique of 40-50 shots with 18g needle. 12month follow-up.	Not truly randomized (first 60). Relatively unusual injection technique of “peppering” which may have affected results. Patients well-matched for age and duration of symptoms. No complications. Results sparse. Results suggest both techniques equally (in)effective.

Altay 2002

Pseudo-randomized clinical trial

4.5	N = 120 with lateral epicondylitis (lateral elbow pain, tenderness over extensor origin, positive Mills' sign and positive chair test)	Injection of 1mL triamcinolone with 1mL lidocaine vs. injection of 2mL of lidocaine alone. Dose not provided. Used peppering injection technique of 40-50 shots with 18g needle. 12month follow-up.
N = 120 with lateral epicondylitis (lateral elbow pain, tenderness over extensor origin, positive Mills' sign and positive chair test)	Pain scoring system used (excellent, good, fair, or poor). Patients evaluated at 2, 6, and 12 months. No difference between groups.	
Apparently most or all chronic pain	”Both groups had excellent results and because the injection of local anesthetics is known to have no long-term effect in the treatment of lateral epicondylitis, the peppering technique seems to be a reliable method of treatment.”	
Injection of 1mL triamcinolone with 1mL lidocaine vs. injection of 2mL of lidocaine alone. Dose not provided. Used peppering injection technique of 40-50 shots with 18g needle. 12month follow-up.	Not truly randomized (first 60). Relatively unusual injection technique of “peppering” which may have affected results. Patients well-matched for age and duration of symptoms. No complications. Results sparse. Results suggest both techniques equally (in)effective.	

Bisset 2006, 2009

RCT

7.0	N = 198 with tennis elbow, at least 6 weeks duration
Wait and see vs. injection (triamcinolone acetonide 10mg plus 1mL 1% lidocaine) vs. physiotherapy (elbow manipulation and therapeutic exercise, 8 treatments of 30 minutes plus HEP including)	Pain-free grip ratio: at 3/6 weeks injection (compared to wait and see) favorable with 42.0 (32.6 to 51.3)/ 36.4 (26.5 to 46.3), (mean (95% CI)). At 26/52 weeks, wait and see favorable with -19.6 (-33.0 to -6.2)/ -12.1 (-23.6 to 0.3); 6 weeks,
Wait and see vs. injection (triamcinolone acetonide 10mg plus 1mL 1% lidocaine) vs. physiotherapy (elbow manipulation and therapeutic exercise, 8 treatments of 30 minutes plus HEP including)	“Physiotherapy combining elbow manipulation and exercise has a superior benefit to wait and see in the first six weeks and to corticosteroid injections after six weeks, providing a reasonable alternative to injections in the mid to long term. The Confounders addressed include removal of those participants who did not adhere to the protocol, assessment of non-protocol treatment, blinding (had assessor guess at end of study and conducted post-hoc analyses).

Steroid injection superior to placebo over short to intermediate term, but not long term. Data suggest triamcinolone 10mg superior to hydrocortisone 25mg.
resistant band over 6 weeks). All received information booklet and "practical advice."

| Smidt 2002 RCT | N = 185 with lateral epicondylitis (pain in lateral elbow, increased pain with epicondylar pressure and resisted wrist dorsiflexion) Subacute and chronic pain | Wait and see (avoid provocative activities, ergonomic advice, paracetamol) vs. injection (1 mL triamcinolone acetonide 10 mg/mL and 1 mL lidocaine 2%; up to 3 injections) vs. physiotherapy (9 sessions of pulsed | Significant short term benefits of corticosteroid injection are paradoxically reversed after six weeks, with high recurrence rates, implying that this treatment should be used with caution in the management of tennis elbow."

<p>| NYS WCB MTG – Elbow Disorders 122 | Data suggest injections most successful short-term. Wait and see and physiotherapy equivalent at 1 year. | Main complaint improvement (3/6/12/26/52 weeks): wait and see (6±14/21±32/33±30/47±30/53±28) vs. injection (43±28/46±30/37±30/36±34/44±32) vs. physiotherapy (11±18/26±28/43±31/53±31/59±25). At 6/52 weeks success rates for injections were 92%/69%, physiotherapy 47%/91%, and wait | Large sample size. Physiotherapy group with mixed interventions. Confounders addressed age, gender, duration of current episode, dominant elbow affected, acute onset, concomitant neck disorders, previous episodes of lateral elbow pain, putative cause, and use of analgesics during past week. |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>N</th>
<th>Description</th>
<th>Methodology</th>
<th>Results</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonks RCT 2007</td>
<td>4.0</td>
<td>N=48 with diagnosis of tennis elbow (pain on palpation and resisted wrist extension). Duration unclear.</td>
<td>No treatment vs injection only (triamcinolone 10mg plus 2% lignocaine, total 1mL to symmetrically tender area) vs physiotherapy only (Pienimaki Physiotherapy 1996), stretching and conditioning) vs combined. 7 weeks follow-up.</td>
<td>Patient related forearm evaluation questionnaire (PRFEQ) superior in injection group for pain (-2.88±1.80 vs. PT -0.70±1.85 vs. combined - 3.31±2.81 vs. observation 0.34±1.43), p = 0.001, PRFEQ function (p = 0.001), and overall (p = 0.001). Pain free grip strength changes from baseline (10.14±8.64 vs. 4.96±12.22 vs. 8.76±13.13 vs. 1.47±7.77), NS.</td>
<td>“Injections alone are effective not only in terms of their pain relieving and function improving effect, but are much more time and cost efficient than physiotherapy.”</td>
<td>Relatively small sample sizes to detect benefits between groups. Data suggest injections effective, but trends appear in data in favor of exercise over observation.</td>
</tr>
<tr>
<td>Dogramaci RCT 2009</td>
<td>6.0</td>
<td>N=75 with positive tennis elbow test with lateral epicondyle pain. 6mo follow-up.</td>
<td>Steroid injection (“triamcinolone (1mL)” n=25) vs. local anesthetic injection with peppering technique (n=25) vs. steroid injection with peppering (n=25).</td>
<td>No difference in VAS at 3 weeks (p=0.155). At 6-months steroid and peppering VAS scores better (p=0.002) than other 2 groups. Percent 'excellent' at 6mo steroid 36% vs. local peppering 48% vs. steroid with peppering 84%.</td>
<td>[T]he local corticosteroid injection becomes more effective and lower the rate of required additional injections when combined with peppering in treating patients with lateral epicondylitis.”</td>
<td>Randomization and patient descriptions sparse. Steroid dose not provided. Data suggest CS with peppering technique superior to injection alone or anesthetic with peppering.</td>
</tr>
</tbody>
</table>
| Newcomer 2001 RCT | 9.5 | N = 39 with lateral epicondylitis (lateral elbow tenderness or extensor mass tenderness plus pain with resisted finger or wrist extensor testing) of | Rehabilitation program in both arms (ice massage TID-5 times a day; wrist stretching, concentric/ eccentric strengthening of wrist extensors/ flexors, 3 sets 10 reps plus betamethasone 6mg plus 4mL 0.25% bupivacaine | Mean decrease in pain with grasp (baseline-4 weeks/8 weeks/6 months): injection (0.79/0.82/1.85) vs. placebo (0.56/1.12/1.56) (NS). Multiple other outcomes measures also NS, with sole exception of VAS pain scale between 8 weeks and 6 months favoring steroid injection (p | “A corticosteroid injection does not provide a clinically significant improvement in the outcome of LE, and rehabilitation should be the first line of treatment in patients with a short duration of symptoms.” | Injections combined with rehab program, thus multiple co-interventions. Rehab program compliance not assessed. Scoring for double-blinding with steroid vs. placebo. Confounders addressed age, gender, symptom duration. Data suggest injection.
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>n</th>
<th>Design</th>
<th>Methodology</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peerbooms 2010</td>
<td>8.0</td>
<td>N = 100 with chronic lateral epicondylitis (lateral epicondyte tenderness, pain with resisted wrist extension with at least 50 on 0-100VAS). At least 6 months duration.</td>
<td>Platelet-rich plasma 3mL plus bupivacaine 0.5% vs. triamcinolone acetonide 40mg/mL plus bupivacaine 0.5%. Used peppering technique. All received stretching for 2 weeks, then strengthening. 12 months total follow-up.</td>
<td>Additional injections in corticosteroid group (7) vs. platelet group (2). DASH scores (pre/0/4/8/12/26/52 weeks): glucocorticoid (131.2±58.2/97.4±69.0/84.7±73.4/92.2±68.7/117.3±75.6/108.4±82.2) vs. platelet-rich plasma (161.2±62.4/135.9±78.0/113.4±79.6/92.0±78.8/79.5±80.3/54.7±73.2), p = 0.005.</td>
<td>“Treatment of patients with chronic lateral epicondylitis with PRP reduces pain and significantly increases function, exceeding the effect of corticosteroid injection.”</td>
</tr>
<tr>
<td>Gosens 2011 RCT</td>
<td>8.0</td>
<td>N = 100 with lateral epicondylitis. Follow-ups at 0/4/8/12/26/52/104 weeks.</td>
<td>Platelet rich plasma injection (PRP) (n=51) vs. corticosteroid injection (CS) (n=49). All received one</td>
<td>39 PRP patients had successful VAS scores vs. 21 in CS, (p<0.0001). At end, no differences between 2 groups for DASH but PRP favored at 26 (p=</td>
<td>“[A] single injection of concentrated autologous platelets improves pain and function more effectively than (CS) in chronic lateral epicondylitis. These</td>
</tr>
</tbody>
</table>

Corticosteroid Injections vs. Platelet-rich Plasma Injections

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>n</th>
<th>Design</th>
<th>Methodology</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krogh 2013 RCT</td>
<td>9.0</td>
<td>N=60 with lateral epicondylitis for at least 3 mo. No injections in past 3 months. Also used ultrasound for diagnosis and following.</td>
<td>Triamcinolon 40mg plus lidocaine (GC) vs. Saline (NS) vs. Platelet Rich Plasma injections (from 27mL whole blood, concentrated and buffered). US-guided injections. PRP and saline peppering technique (~7 tendon injection). GC inx only at deepest aspect common tendon origin. Follow-ups at 4 weeks, 3, 6, and 12 months.</td>
<td>Changes in pain from baseline (PRP/NS/GC) at 1 month: -0.5/-1.7/-9.8. At 3 months: -6.0/-3.3/-7.1. Disability change at 1mo (PRP/NS/GC): -5.2/-3.4/-21.9. Disability at 3 months: -16.6/-7.6/-13.8. No differences between groups in ultrasound Doppler findings, or tendon thickness.</td>
<td>“Neither injection of PRP nor glucocorticoid was superior to saline with regard to pain reduction in LE at the primary end point at 3 months. However, injection of glucocorticoid had a short-term pain reducing effect at 1 month in contrast to the other therapies.”</td>
</tr>
</tbody>
</table>

Some baseline differences, especially more chronic in GC group, presumably biases against GC efficacy. Three month endpoint after which high dropouts and intended to do 12 month study, but 12 month data compromised with the dropouts. Data suggest GC superior and only in the 4 week timeframe.
Corticosteroid Injections vs. Autologous Blood

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Duration</th>
<th>Participants</th>
<th>Intervention</th>
<th>Outcome</th>
<th>Other Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazemi 2010</td>
<td>Quasi-RCT</td>
<td>6.5 weeks</td>
<td>N = 60 aged 27-64 years diagnosed with tennis elbow (duration <1 year)</td>
<td>30 injected with methylprednisolone (20 mg plus 1 ml of 2% lidocaine) (CS) vs. 30 patients injected with 2 ml of Autologous blood (AB) plus 1 ml of 2% lidocaine with follow-ups at 4 and 8 weeks.</td>
<td>Pain (0/4/8 weeks): AB (6.5/2.7/1.5) vs. CS (6.7/4.5/4.0), p=0.001. AB also favored for grip pain (p=0.002), pressure pain threshold (p = 0.031), and Quick DASH (p = 0.004).</td>
<td></td>
</tr>
</tbody>
</table>

“Because of the satisfactory pain relief and restoring function, we prefer AB injections as the treatment in patients with LET.” |

| Ozturan 2010 | RCT | 4.0 weeks | N = 60 diagnosed with lateral epicondylitis for at least 6 months. Follow-ups at 4, 12, 26, 52 wks. | All groups initially prilocaine 1mL to skin and SQ. Group 1 (CS) methylprednisolone acetate (1 mL) with 5 skin penetrations at tender point (n = 20) vs. group 2 (AB) 2mL autologous blood to most painful part (n = 20) vs. group 3, US gel and 1 ESWT with 2000 imp. at 0.17 mJ/mm² once a week for 3 weeks. | At 4 weeks, CS superior functional score vs. other groups (p<0.001). At 52 weeks, AB and ESWT improved vs. CS (p<0.001). For Thomsen Provocation Test, only difference at 4 weeks and CS favored over both groups (p<0.001). For grip strength mean improvement, at 4 weeks, corticosteroid favored (p<0.05). At 26 weeks, extracorporeal shock wave therapy group made greater improvement than corticosteroid injections (p<0.05). No other differences seen. | “Corticosteroid injection provided a high success rate in short term. However, (AB) injection and (ESWT) gave better long-term results, especially considering the high recurrence rate with (CS). We suggest that the treatment of choice for lateral epicondylitis be (AB) injection.” |

<p>| | | | | | more heavy work in CS>AB>ESWT. CS dose not provided. Data suggest ESWT and AB comparable, and both superior to CS. |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Treatment</th>
<th>Duration</th>
<th>VAS at 6 weeks</th>
<th>VAS at 12 weeks</th>
<th>VAS at 24 weeks</th>
<th>VAS at 52 weeks</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uzunca</td>
<td>2007</td>
<td>Pseudo-randomized clinical trial</td>
<td>N=60 with lateral elbow and forearm pain. Duration more than 6 weeks.</td>
<td>Pulsed electromagnetic field (Group I: magnetotherapy, BTL-09, 6mT/session, 25Hz, 4.6Hz frequency, 30 minute sessions, 5 times a week/3 weeks.) vs. placebo (sham, Group II) vs methylprednisolone acetate 40mg plus prilocaine HCl 20mg/1mL (into most tender point, Group III). Follow-up “after 3 months.”</td>
<td>Rest pain VAS (pre/post/3 months): Group I (3.43±2.56/1.05±1.69/0.9±0.44) vs. Group II (3.39±2.08/1.95±1.75/1.79±1.93) vs. Group III (4.02±2.05/0.50±0.69/1.40±2.09). All improved. Statistical results between groups not presented.</td>
<td>“Patients treated with PEMF had lower pain levels during rest, activity, and nighttime when compared with patients treated with corticosteroid injections after 3 months, although pain during resisted wrist dorsiflexion and forearm supination maneuvers and algometric values were not different.”</td>
<td>Pseudorandomization by sequence in clinic. Durations differed at baseline (4.1 vs. 2.4 vs. 3.4 months) concern for potential randomization failure. Blinding methods somewhat unclear. Score for PEMF vs. sham. (Score for injection 5.0). Highly intensive treatment regimen. Between group results not presented with tables of data, qualitatively described as mostly negative.</td>
<td></td>
</tr>
<tr>
<td>Verhaar</td>
<td>1996</td>
<td>RCT</td>
<td>N = 106 with tennis elbow (pain on lateral elbow, pain with resisted wrist dorsiflexion with elbow fully extended)</td>
<td>Corticosteroid injection (1 mL of triamcinolone acetate suspension 1% diluted with 1 mL of lidocaine 1% into tendinous origin) vs. physiotherapy (12 treatments over 4 weeks of deep transverse friction over the extensor origin and Mills’ manipulations).</td>
<td>Physiotherapy was favorable at 0 weeks for mean grip strength (24.5 ± 13.6kg) vs. injection (18.4 ± 9.3), but at 6/52 weeks injection favored (29.1 ± 15.9)/(33.1 ± 13.5) vs. physiotherapy (25.6 ± 13.7)/(34.5 ± 14.6).</td>
<td>“We conclude that at six weeks, treatment with corticosteroid injections was more effective than Cyriax physiotherapy and we recommend it because of its rapid action, reduction of pain and absence of side effects.”</td>
<td>Data suggest injection superior, however trial duration 6 weeks.</td>
<td></td>
</tr>
<tr>
<td>Haker</td>
<td>1993</td>
<td>RCT</td>
<td>N = 61 with lateral elbow pain and 2+ of: tenderness over lateral epicondyle, resisted wrist extension, passive extensor stretching, resisted finger extension. Duration at least 1 month</td>
<td>Elbow band (Epicondylitis-Clasp, group I, n = 11) vs. splint (forearm support with wrist in 30° dorsiflexion, group II, n = 19) vs. injection (triamcinolone 0.2mL of 10mg/mL plus bupivacaine HCl 0.3 ml into maximal tenderness; 2nd injection in 1 week if no percent excellent or good outcomes (2 weeks/3 months/6 months/12 months): Group 1 (11/50/44/38) vs. Group II (5/21/53/42) vs. Group III (68/63/28/31). Steroid superior at 2 weeks (p <0.001), and NS other times. Vigorimeter test different between group I (2) and group III (28) at 2 weeks, p <0.05, and between group II (3) and group III (28), p</td>
<td>Percent excellent or good outcomes (2 weeks/3 months/6 months/12 months): Group 1 (11/50/44/38) vs. Group II (5/21/53/42) vs. Group III (68/63/28/31). Steroid superior at 2 weeks (p <0.001), and NS other times. Vigorimeter test different between group I (2) and group III (28) at 2 weeks, p <0.05, and between group II (3) and group III (28), p</td>
<td>“Despite the high incidence of recurrence and the clinical side-effects reported after local steroid injection… steroid injection might be the treatment of choice in very severe cases to achieve rapid relief of pain.”</td>
<td>Data suggest injection superior in short term. Trend towards worse results in injection at 6-12 months.</td>
<td></td>
</tr>
</tbody>
</table>
Corticosteroid Injections with Lidocaine vs. Bupivacaine

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Design</th>
<th>Patients</th>
<th>Treatment</th>
<th>Follow-up</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sölveborn 1995</td>
<td>109</td>
<td>RCT</td>
<td>N = 109 with radial epicondylalgia (history, tender to palpation on epicondyle, increased pain with resisted wrist extension)</td>
<td>Injections with triamcinolone 10mg plus 1mL lidocaine 5mg/mL vs. bupivacaine 2.5mg/mL. 1-year follow-up.</td>
<td>Overall results NS. However, bupivacaine superior to lidocaine at 2 weeks and 1 year if either no prior treatment or short duration of symptoms.</td>
<td></td>
</tr>
</tbody>
</table>

“Comparison between lidocaine (a short-acting local anesthetic) and bupivacaine (which is longer acting) as additives to a local corticosteroid injection showed no differences in effects for the entire patient group. However, when the material was subdivided, outcome at 2 weeks was significantly better with bupivacaine for patients who had not been treated previously in any way and for those with short histories of epicondylalgia, defined as symptom duration no longer than 3 months.”

Results sparse. Data suggest injections with bupivacaine superior to lidocaine over intermediate to long term if no prior treatment and short duration of symptoms.

Activity after Corticosteroid Injections

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Design</th>
<th>Patients</th>
<th>Treatment</th>
<th>Follow-up</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weitoft 2010</td>
<td>90</td>
<td>RCT</td>
<td>N = 90 patients with rheumatoid arthritis and elbow synovitis (men: 18, female: 72)</td>
<td>Intraarticular elbow injection in all (triamcinolone hexacetonide 20mg) then Immobilization Group (n=46) with arm in sling for 48 hours post injection vs. usual Activity Group (n=44). After baseline, follow ups at 1 wk, 3 months, and 6 months post injection.</td>
<td>Elbow pain, function, and mobility were not different between groups.</td>
<td></td>
</tr>
</tbody>
</table>

“Because neither wrists nor elbows respond with a better outcome after postinjection rest, we conclude that patients with intraarticular glucocorticoid treatment of joints of the upper extremity should not be given advice to rest after the injection.”

RA patients. Trend to more relapses in the rest group. Data suggest rest not indicated post intraarticular injection. Unclear applicability to other diagnoses especially including lateral epicondylalgia.
Dry Needling/Peppering Technique

<table>
<thead>
<tr>
<th>Author Year (Score)</th>
<th>Category: Study type:</th>
<th>Conflict of Interest:</th>
<th>Sample size:</th>
<th>Age/Sex:</th>
<th>Comparison:</th>
<th>Follow-up:</th>
<th>Results:</th>
<th>Conclusion:</th>
<th>Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krogh 2013 (score = 9.0)</td>
<td>Dry Needling RCT</td>
<td>COI, one or more of the authors have received or will receive benefits for personal or professional use. Sponsored by the Danish Rheumatism Association, the Musculoskeletal Statistics Units at the Parker Institute, and the Biomet Biologics Inc.</td>
<td>N = 60 with lateral epicondylitis for at least 3 months. No injections in past 3 months. Also used ultrasound for diagnosis and following.</td>
<td>Mean age: 45.4 years; 29 males, 31 females.</td>
<td>Triamcinolone [sic] 40mg plus lidocaine (GC) (n=20) vs. Saline (NS) (n=20) vs. Platelet Rich Plasma injections (from 27mL whole blood, concentrated and buffered) (n=20). US-guided injections. PRP and saline peppering technique (~7 tendon injx). GC injection only at deepest aspect common tendon origin.</td>
<td>Follow-up at 4 weeks, 3, 6, and 12 months.</td>
<td>Changes in pain from baseline (PRP/NS/GC) at 1 month: -0.5/-1.7/-9.8. At 3 months: -6.0/-3.3/-7.1. Disability change at 1 month (PRP/NS/GC): -5.2/-3.4/-21.9. Disability at 3 months: -16.6/-7.6/-13.8. No differences between groups in ultrasound Doppler findings, or tendon thickness.</td>
<td>“Neither injection of PRP nor glucocorticoid was superior to saline with regard to pain reduction in LE at the primary end point at 3 months. However, injection of glucocorticoid had a short-term pain-reducing effect at 1 month in contrast to the other therapies.”</td>
<td>Some baseline differences, especially more chronic in GC group, presumably biases against GC efficacy. Three month endpoint after which high dropouts and intended to do 12 month study, but 12 month data compromised with the dropouts. Data suggest GC superior and only in 4 week timeframe.</td>
</tr>
<tr>
<td>Altay 2002 (score = 4.5)</td>
<td>Dry Needling Pseudo-randomized clinical trial</td>
<td>No mention of COI or sponsorship.</td>
<td>N = 120 with lateral epicondylitis (lateral elbow pain, tenderness over extensor origin, positive Mills’ sign and positive chair test). Apparently most or all chronic pain</td>
<td>Mean age: 43.75 years; no mention of sex distribution.</td>
<td>Injection of 1mL triamcinolone with 1mL lidocaine (n=60) vs. injection of 2mL of lidocaine alone. Dose not provided. (n=60) Used peppering injection technique of 40-50 shots with 18g needle.</td>
<td>Follow-up at 12 months.</td>
<td>Pain scoring system used (excellent, good, fair, or poor). Patients evaluated at 2, 6, and 12 months. No difference between groups.</td>
<td>“Both groups had excellent results, and because the injection of local anesthetics is known to have no long-term effect in the treatment of lateral epicondylitis, the peppering technique seems to be a reliable method of treatment.”</td>
<td>Not truly randomized (first 60). Technique of “peppering” yet no control for peppering technique. Patients well-matched for age and duration of symptoms. No complications. Results sparse. Results suggest both techniques equally</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Design</td>
<td>Sponsorship/COI</td>
<td>Study Population</td>
<td>Interventions</td>
<td>Follow-up</td>
<td>Outcomes</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
</tbody>
</table>
| Dogramaci 2009 (score = 6.0) | Dry Needling | RCT | No mention of sponsorship or COI. | N = 75 with positive tennis elbow test with lateral epicondyle pain. | Mean age: 46.35 years; 32 males, 43 females | Steroid injection ("triamcinolone (1mL)"
(n=25) vs. local anesthetic injection with peppering technique
(n=25) vs. steroid injection with peppering
(n=25). | Follow-up at 6 months. | No difference in VAS at 3 weeks (p=0.155). At 6-months steroid and peppering VAS scores better (p=0.002) than other 2 groups. Percent 'excellent' at 6mo steroid 36% vs. local peppering 48% vs. steroid with peppering 84%. “The local corticosteroid injection becomes more effective and lower the rate of required additional injections when combined with peppering in treating patients with lateral epicondylitis.” | Randomization and patient descriptions sparse. Steroid dose not provided. Data suggest CS with peppering technique superior to injection alone or anesthetic with peppering. |
| Stenhouse 2013 (score=3.5) | Dry Needling | RCT | No mention of sponsorship. No COI. | N = 28 patients with refractory lateral epicondylitis who underwent dry needling | Mean age: 49.1 years; 11 males, 17 females | Dry Needling Group: received dry needling (23G needle passing in and out long axis of tendon without exiting skin 40-50 times) alone for 2 min (n=13) vs ACP Group: received dry needling for 2 min and then received autologous conditioned plasma injection of 2 mL (n=15). | Follow-up at 1, 2, and 6 months. | Mean improvement in VAS was 0.85 (95% CI 1.13-2.83) in dry needling group compared to 2.19 (95% CI 0.85-3.53) in ACP group at 2 months. Mean improvement in VAS at 6 months was 2.37 (95% CI 0.27-4.47) in dry needling compared to 3.92 (95% CI 2.11-5.72) in the ACP group. Nirschl scores improved by 22.5 points (95% CI 6.4-38.6) in dry needling group compared to 40.0 points (95% CI 27.5-52.6) in the ACP group. “There is a trend towards greater clinical improvement in short term for patients treated with additional ACP, however no significant difference between the two treatment groups was demonstrated at each follow-up interval.” | Pilot study. Small sample. Baseline differences in duration and Nirschl scores (22.9 vs. 11.1). 6 month follow-up evaluation data suggest a trend towards short term clinical improvement in ACP group. |
| Uygur 2017 (score=2.5) | Dry Needling | RCT | No mention of sponsorship or COI. | N = 92 with lateral epicondylitis. Chronicity unstated. | Mean age: 47.83 years; 20 males; 72 females | Dry needling (n=51) vs IBU 100mg BID plus elbow strap (n=41). | Follow-up at 3 weeks and 6 months. | Significant difference in PRTEE (pain and function) scores at 3 weeks in both “Because of the low complication rate, dry needling is safe method, and it might be an | Sparse methods. Subtherapeutic IBU in control group (100mg BID). No |
Patients not described well

| groups (p < 0.05). At six months, dry needling produced lower mean PRTEE scores compared to IBU (p < 0.01). | effective treatment option for LE.” | baseline demographic data by groups. Duration not reported. Follow-ups at 3 weeks and 6 months. Data suggest at 6 months the dry needling was more effective. Possible usual care bias as control had IBU plus brace. |
Evidence for Use of Botulinum Injections for Lateral Epicondylalgia

There are 4 high- and 1 moderate-quality RCTs incorporated into this analysis.

<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placzek 2007 RCT</td>
<td>8.5</td>
<td>N = 132 with radial epicondylitis; ≥3 different conservativ e therapy measures tried without success; total score of 4 points on standardized examination. Duration >4 months.</td>
<td>Injection of botulinum toxin A (Dysport 60 mouse units plus 0.6mL NS) vs. placebo (0.6 mL NS); 18 weeks follow-up.</td>
<td>Mean±SD VAS score for continuous pain comparing botulinum vs. placebo: Week 6: 2.93± 0.26 vs. 4.07±0.32; p = 0.010. Week 18: 1.82± 0.26 vs. 2.68±0.31; p = 0.035. Maximum pain scores not different. Middle finger extension strength worse in botulinum group at 2, 6 weeks. Wrist strengths not different.</td>
<td>“We concluded that local injection of botulinum toxin A is a beneficial treatment for radial epicondylitis (tennis elbow). The treatment can be performed in an outpatient setting and does not impair the patient's ability to work.”</td>
<td>Improved pain scores over 18 weeks. No differences in maximum pain scores. No longer term follow-up.</td>
</tr>
<tr>
<td>Espandar 2010 RCT</td>
<td>8.5</td>
<td>N = 48 aged 18-70 with chronic lateral epicondylitis</td>
<td>Injection of botulinum toxin A 60 units in 1 ml NS (n=24) vs. 1 ml NS (n=24). Injections 1/3 of way from olecranon to radial styloid. Follow-up 0, 4, 8, and 16 weeks.</td>
<td>Pain score at rest, mm (baseline/week 4/week 8/ week 16): botulinum toxin (48.8±23.7/20.4±15.9/17.9±18.0/3.9±6.0) vs. placebo (46.4±16.2/34.5±12.2/29.4±14.5/16.7±10.5), p=0.010. Pain score during maximum grip, mm (baseline/week 4/week 8/week 16): (65.8±22.0/62.0±23.3/43.8±23.1/18.8±10.0) vs. (65.0±18.3/57.4±18.2/51.5±20.1/30.6±15.6), p=0.22. Maximum grip strength, kg: (17.4±5.2/14.5±4.5/13.1±4.4/17.1±5.4) vs. (18.8±5.0/19.0±4.6/18.4±8.2/18.8±4.8), p=0.02.</td>
<td>“The use of precise anatomic measurement to guide injection of botulinum toxin significantly reduced pain at rest in patients with chronic refractory lateral epicondylitis.”</td>
<td>Data suggest botulinum superior to NS for short term, but problems with weakness noted. Conclusion regarding anatomic measurement does not follow from the design as no randomization of injection location.</td>
</tr>
</tbody>
</table>
| Wong 2005 RCT | 8.0 | N = 60 with tennis elbow, >18 years old, lateral elbow pain, lateral epicondylar | 60 U botulinum toxin (Dysport) vs. normal saline (deep subcutaneous tissue and muscle, 1cm from lateral epicondyle, toward tender spot). 12 | Mean±SD pain intensity (mm) comparing botulinum vs. placebo: Week 4: 25.3±18.8 vs. 50.5±21.7; p <0.001. Week 12: 23.5±22.3 vs. 43.5±23.9; p = “Botulinum toxin injection may improve pain over a 3-month period in some patients with lateral epicondylitis, but injections may be associated with digit No longer term follow-up. Shorter mean symptoms duration in botulinum at baseline (11.8 vs. 19.1mo) | NYS WCB MTG – Elbow Disorders
Evidence for the Use of Platelet-rich Plasma and Autologous Blood Injections for Epicondylalgia

There are 2 high (one with 2 reports) and 2 moderate-quality RCTs incorporated into this analysis for platelet-rich plasma injections. There are 3 moderate-quality RCTs incorporated into this analysis for autologous blood injections.

<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krogh 2013 RCT</td>
<td>9.0</td>
<td>N = 60 with lateral epicondylitis for at least 3 months. No injections in past 3 months. Also used ultrasound for diagnosis and following.</td>
<td>Triamcinolon 40mg plus lidocaine (GC) vs. Saline (NS) vs. Platelet Rich Plasma injections (from 27mL whole blood, concentrated and buffered). US-guided injections. PRP and saline peppering technique.</td>
<td>Changes in pain from baseline (PRP/NS/GC) at 1 month: -0.5/-1.7/-9.8. At 3 months: -6.0/-3.3/-7.1. Disability change at 1mo (PRP/NS/GC): -5.2/-3.4/-21.9. Disability at 3 months: -16.6/-7.6/-13.8. No differences between groups in ultrasound Doppler findings, or tendon thickness.</td>
<td>"Neither injection of PRP nor glucocorticoid was superior to saline with regard to pain reduction in LE at the primary end point at 3 months. However, injection of glucocorticoid had a short-term pain-reducing effect at 1 month in contrast to the other therapies."</td>
<td>Some baseline differences, especially more chronic in GC group, presumably biases against GC efficacy. Three month endpoint after which high dropouts and intended to do 12 month study, but 12 month data compromised with the dropouts. Data suggest GC superior and only in the 4 weeks follow-up.</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Duration</td>
<td>Intervention</td>
<td>Follow-up</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>----------</td>
<td>--</td>
<td>-----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Peerbooms 2010 RCT</td>
<td>8.0</td>
<td></td>
<td>Platelet-rich plasma 3mL plus bupivacaine 0.5% vs. triamcinolone acetonide 40mg/mL plus bupivacaine 0.5%. Used peppering technique. All received stretching for 2 weeks, then strengthening. 12 months total follow-up.</td>
<td>0/4/8/12/26/52 weeks</td>
<td>Additional injections in corticosteroid group (7) vs. platelet group (2). DASH scores (pre/0/4/8/12/26/52 weeks): glucocorticoid (131.2±58.2/97.4±69.0/84.7±73.4/92.2±68.7/117.3±75.6/108.4±82.2) vs. platelet-rich plasma (161.2±62.4/135.9±78.0/113.4±79.6/92.0±78.8/79.5±80.3/54.7±73.2), p = 0.005. “Treatment of patients with chronic lateral epicondylitis with PRP reduces pain and significantly increases function, exceeding the effect of corticosteroid injection.” Blinding aspects for treating physician particularly unclear. No placebo control. Used peppering technique. Total dose of glucocorticoid somewhat unclear. Data suggest PRP superior to glucocorticosteroid injection at 1 year.</td>
<td></td>
</tr>
<tr>
<td>Gosens 2011 RCT (2nd Report, Peerbooms 2010)</td>
<td>8.0</td>
<td></td>
<td>51 with platelet rich plasma injection (PRP) vs. 49 corticosteroid injection (CS). All received one injection.</td>
<td>0/4/8/12/26/52/104 weeks</td>
<td>39 PRP patients had successful VAS scores vs. 21 in CS, (p<0.0001). At end, no differences between 2 groups for DASH but PRP favored at 26 (p=0.037), 52 and 104 weeks (P<0.0001), 37 treated successfully in PRP vs. 19 with CS (p<0.0001). “[A] single injection of concentrated autologous platelets improves pain and function more effectively than (CS) in chronic lateral epicondylitis. These improvements were sustained over a 2 year follow-up time with no reported complications.” Blinding unclear. Baseline higher DASH in PRP (44 v 56, p<0.001), suggests possible randomization failure. Data suggest PRP superior at 2 years.</td>
<td></td>
</tr>
<tr>
<td>Thanasas 2011 RCT</td>
<td>7.0</td>
<td></td>
<td>Single injection of 3 mL of autologous blood vs. Group B: 3 mL of PRP under ultrasound guidance. 1 week after injection, eccentric loading exercises were performed twice a day for 5 weeks. Re-evaluation</td>
<td></td>
<td>At 6 weeks, mean improvement was 3.8 points (95% CI, 3.1-4.5) in group B (61.47% improvement) and 2.5 points (95% CI, 1.9-3.1) in group A (41.6% improvement; p<0.05). “Regarding pain reduction, PRP treatment seems to be an effective treatment for chronic lateral elbow epicondylitis and superior to autologous blood in the short term. Defining details of indications, best PRP concentration, number and time of injections, as well as rehabilitation protocol might Six month follow-up. All treated with exercise. Peppering technique used. Data suggested modest superiority of PRP over AB at 3 and 6 months.</td>
<td></td>
</tr>
</tbody>
</table>
done at 6 weeks, 3 and 6 months.

increase the method’s effectiveness. Additionally, the possibility of cost reduction of the method might justify the use of PRP over autologous whole blood for chronic or refractory tennis elbow.”

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Patient Characteristics</th>
<th>Methodology</th>
<th>Results</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creaney 2011 RCT</td>
<td>80</td>
<td>150 diagnosed with lateral epicondylitis not responsive to conservative treatments. Follow-ups at 0/1/3/6 months.</td>
<td>PRP group had a success rate of 66% (95% CI 55% to 77%) vs. 72% (95% CI 61% to 83%) in the blood group, p = 0.59.</td>
<td>“[P]atients who are resistant to first-line physical therapy such as eccentric loading,ABI or PRP injections are useful second-line therapies to improve clinical outcomes. In this study, up to 7 out of 10 additional patients in this difficult to treat cohort benefit from a surgery-sparing intervention.”</td>
<td>Blinding not well described. Many details sparse. Patients not well described. Data suggest comparable results, consistent with equal efficacy (or inefficacy).</td>
</tr>
<tr>
<td>Kazemi 2010 Quasi-RCT</td>
<td>30</td>
<td>60 aged 27-64 years diagnosed with tennis elbow. Duration <1 year.</td>
<td>Pain (0/4/8wks): AB (6.5/2.7/1.5) vs. CS (6.7/4.5/4.0), p = 0.001. AB also favored for grip pain (p = 0.002), pressure pain threshold (p = 0.031), and Quick DASH (p = 0.004).</td>
<td>“[B]ecause of the satisfactory pain relief and restoring function, we prefer AB injections as the treatment in patients with LET.”</td>
<td>Quasi-randomized (every other). Unclear if prior corticosteroid injection exclusionary. Location of AB injection not noted. Corticosteroid injected from post. to epicondyle to ECRB undersurface. Not targeted max. tender point. Data suggest AB superior to steroid.</td>
</tr>
<tr>
<td>Ozturan 2010 RCT</td>
<td>20</td>
<td>60 diagnosed with lateral epicondylitis for at least 6 months. Follow-ups at 4, 12, 26, 52 weeks.</td>
<td>All groups initially prilocaine 1mL to skin and SQ. Group 1 (CS) methylprednisolone acetate (1 mL) with 5 skin penetrations at tender point (n = 20) vs. group 2 (AB) 2mL</td>
<td>At 4 weeks, CS superior functional score vs. other groups (p<0.001). At 52 weeks, AB and ESWT improved vs. CS (p<0.001). For Thomsen Provocation Test, only difference at 4 weeks and CS favored over both groups (p<0.001). For grip strength mean</td>
<td>“[C]orticosteroid injection provided a high success rate in short term. However, (AB) injection and (ESWT) gave better long-term results, especially considering the high recurrence rate with (CS). We suggest that the More heavy work in CS>AB>ESWT. CS dose not provided. Data suggest EWST and AB comparable, and both superior to CS.</td>
</tr>
</tbody>
</table>
Autologous blood to most painful part (n=20) vs. group 3, US gel and 1 ESWT with 2000 imp. at 0.17 mJ/mm² once a week for 3 weeks. Improvement, at 4 week, corticosteroid was favored (p<0.05). At 26 weeks, extracorporeal shock wave therapy group made greater improvement than corticosteroid injections (p<0.05). No other differences seen.

Evidence for Use of Polidocanol Injections for Epicondylalgia

There is 1 moderate-quality RCT incorporated into this analysis.

<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeisig 2008 RCT with partial crossover</td>
<td>7.5</td>
<td>N = 32 (36 elbows) with tennis elbow (lateral epicondyle tenderness, pain with forced wrist extension [sic?]). At least 3 months (mean 21 months)</td>
<td>Polidocanol (10mg/mL) vs lidocaine HCl (10mg/mL) plus epinephrine (5ug/mL) injection, 0.5mL injected. Ultrasound and Doppler-guided injections. 3 months blind followup, 12 months total followup.</td>
<td>At 3-month follow-up, no differences in satisfaction (polidocanol 9/18(50%) vs. lidocaine 10/16 (62.5%), p = 0.51 or VAS (pre/3 months) (polidocanol 68/59 vs. placebo 70/54). No differences in pain during grip (p = 0.49), and grip strength (p = 0.86). At 12-months, no differences between groups (p = 1.0, p = 0.66, p = 0.11).</td>
<td>“Injection of the sclerosing substance polidocanol or the local anesthetic lidocaine plus epinephrine gave pain relief in 50-62% of patients with tennis elbow.”</td>
<td>Data suggest polidocanol ineffective.</td>
</tr>
</tbody>
</table>
Evidence for the Use of Periarticular Viscosupplementation Injections

There are 2 moderate-quality RCTs incorporated into this analysis.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study Type</th>
<th>Score (0-11)</th>
<th>Sample Size</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akermark 1995</td>
<td>RCT</td>
<td>6.5</td>
<td>N = 65 diagnosed with lateral epicondylitis ≥3 months in Sweden</td>
<td>1 ml glycosaminoglycan polysulfate injection (GAGPS) vs. saline placebo injection. Injections given once a week for 5 weeks. Final follow-up at 26 weeks.</td>
<td>Significant difference in VAS between groups at week 6 and 12: p = 0.0053, p = 0.021. Significant difference in number of subjects classified as treatment failures at week 6, p = 0.011. Significant difference for pain at restricted extension at week 3 and 12: p = 0.012, p = 0.032.</td>
<td>“GAGPS injection therapy has a good pain relieving effect in chronic lateral epicondylalgia, although fairly often causing some transient local pain at injection site.”</td>
<td>Blinding not well described. Study fairly invasive with 5 injections. Inexplicable difference in efficacy between 2 centers.</td>
</tr>
<tr>
<td>Petrella 2010</td>
<td>RCT</td>
<td>6.0</td>
<td>N = 331 raquette sport athletes with chronic lateral epicondylitis ≥3 months</td>
<td>1.2 cc HA injection (1% sodium hyaluronate, n=165) vs. 1.2 cc saline placebo injection (n=166). Two injections were given at random at baseline, and day 7. Final follow up was at 365 days.</td>
<td>HA vs. placebo mean±SD for VAS rest (cm), VAS grip (cm), patients global satisfaction using 5 pt. scale, grip (PSI), patient assessment of normal function using 5 pt. scale, and physicians global assessment using 5 pt. scale at days 30: 2.2±1.2/7.1±1.3/p<0.05, 2.0±1.5/9.9±1.5/p<0.05, 4.6±1.4/6.2±2.2/p<0.05, 68.0±2.1/45.5±1.1/p<0.05, 4.4±0.2/2.6±0.4/p<0.05, 4.3±1.1/1.8±2.2/p<0.05. Day 90: 2.5±1.4/6.7±1.5/p<0.05, 2.2±1.8/9.3±1.4/p<0.05, 4.8±0.6/1.9±0.3/p<0.05, 67.7±3.0/48.1±2.3/p<0.05, 4.8±0.1/1.3±0.7/p<0.05, 4.6±1.1/2.0±1.7/p<0.05. Day 356: 2.4±1.4/7.7±1.3/p<0.05, 2.9±1.4/9.1±1.1/p<0.05, 4.8±0.9/1.1±1.8/p<0.05, 65.7±1.8/45.6±1.3/p<0.05, 4.6±0.3/0.9±1.9/p<0.05, 4.7±0.5/1.3±0.7/p<0.05.</td>
<td>“Peri-articular HA treatment for tennis elbow was significantly better than control in improving pain at rest and after maximal grip testing.”</td>
<td>Attempted blind; however viscosity different. Data suggest efficacy.</td>
</tr>
</tbody>
</table>

Evidence for Use of Other Injections
There is 1 moderate-quality pilot study incorporated into this analysis.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Score</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scarpone 2008 Pilot study</td>
<td>6.0</td>
<td>N = 24 with refractory lateral epicondylosis (failed relative rest, PT, NSAIDs, 2 corticosteroid injections). At least 6 months duration.</td>
<td>Prolotherapy injections (1 part 5% sodium morrhuate, 1.5 parts 50% dextrose, 0.5 parts 4% lidocaine, 0.5 parts 0.5% sensorcaine, 3.5 parts normal saline) vs. saline. Three 0.5mL injections into supracondylar ridge, lateral epicondyle and annular ligament at 0, 4, 8 weeks; 1 year follow-up.</td>
<td>Pain (baseline/8/16 weeks): prolotherapy (5.1±0.8/3.3±0.9/0.5±0.4) vs. control (4.5±1.7/3.6±1.2/3.5±1.5), p <0.001 at 16 weeks. Grip strengths (2nd): prolotherapy (37.6±20.1/59.3±27.5/70.0±26.3) vs. control (49.0±22.6/79.8±38.6/80.0±39.5), NS. At 1 year, 60% prolotherapy vs. 10% controls had no pain or impact on ADLs.</td>
<td>“Prolotherapy with dextrose and sodium morrhuate was well tolerated, effectively decreased elbow pain and improved strength testing in subjects with refractory lateral epicondylosis compared to Control injections.”</td>
<td>Pilot study. Plausibility of blinding in doubt as saline control vs. combination anesthetic (which would tend to unblind) and irritating substance. Durations differed at baseline (1.1 vs. 2.7 years), potentially biasing against control group. Study requires repeating with quality methods. Data conflict. Pain ratings at 16 weeks suggest efficacy, but grip strength does not.</td>
</tr>
</tbody>
</table>

Evidence for the Use of Surgical Interventions for Epicondylalgia

There are 6 moderate-quality RCTs incorporated into this analysis.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Score</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dunkow 2004 RCT</td>
<td>6.5</td>
<td>N = 45 (47 elbows) with tennis elbow. Had failed 2 injections, modification of activity. Duration at least 12 months.</td>
<td>Open Nirschl release vs. percutaneous tenotomy (divide common extensor origin). All treated with same postoperative physiotherapy program. Minimum 12 months follow-up.</td>
<td>Patients very pleased with results in percutaneous 14/23 (60.9%) vs. open 6/24 (25%), p = 0.012. Median time to return to work: percutaneous 2 weeks (range 2-3) vs. open 5 weeks (range 4-6), p = 0.0001. Median DASH basic scores (pre/post) percutaneous (70/49) vs. open (70/53).</td>
<td>“The percutaneous procedure is a quicker and simpler procedure to undertake and produces significantly better results.”</td>
<td>Data suggest results superior in percutaneous group. Superior outcomes include earlier return to work.</td>
</tr>
<tr>
<td>Khashaba 2001 RCT</td>
<td>6.0</td>
<td>N = 18 patients with 23 tennis elbows (failed injections).</td>
<td>Nirschl release with vs. without drilling; 6 months follow-up.</td>
<td>Mean improvement in VAS pain 4.6cm drilled vs. 6.8cm not drilled. Mean power improvement in drilled 5.2kg vs.</td>
<td>“This randomized double blind comparative prospective trial shows that drilling confers no benefit and actually causes more pain,”</td>
<td>Limited results reported. Data suggest drilling ineffective.</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>N</td>
<td>Description</td>
<td>Results</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>-------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Leppilahti 2001</td>
<td></td>
<td>4.0</td>
<td>N = 26 patients (28 elbows) with tennis elbow. Prior treatments with physiotherapy, injections, splint/forearm support band. Minimum 5 months duration. Decompression of posterior interosseous nerve (at the arcade of Frohse, supinator) vs. lengthening of ECRB tendon (z-shaped tenotomy, then sutured). Follow-up of mean 31 months, minimum 22 months.</td>
<td>No complications. Re-operations of “4 poor elbows” in PIN vs. 3 in ECRB. Lateral elbow pain provoked with activity present in PIN 11/14 (78.6%) vs. ECRB 12/14 (85.7%). Mean grip strengths 0.5 vs. 0.47 KP/cm². Excellent or good results in PIN 7/14 (50%) vs. ECRB 6/14 (42.9%).</td>
<td>“The present results seem to indicate that PIN neurolysis and lengthening of the tendon of the ECRB muscle are of similar value in the surgical treatment of resistant tennis elbow. Neither of these methods, however, can be considered a very effective treatment in chronic tennis elbow.”</td>
<td></td>
</tr>
<tr>
<td>Radwan 2008</td>
<td></td>
<td>6.0</td>
<td>N = 56 with lateral epicondylitis (pain induced with palpation, resisted wrist extension, chair test) with failure of conservative treatment (NSAIDs, cortico-steroid injections, physical therapy, exercise, brace). Duration at least 6 months. Extracorporeal shock wave (1500 shocks at 18kV, 0.22mJ/mm²) vs. percutaneous release of extensor origin; 12 months follow-up. At 12 weeks, at least 50% improvement in Thomsen score in ESWT 21/29 (72.4%) vs. tenotomy 23/27 (85.2%). At 12 months, at least 80% improvement in Thomsen score in ESWT 14/29 (48.3%) vs. tenotomy 17/27 (63.0%). No differences in night pain, rest pain, pressure, Thomsen test, Chair test, grip at any time period.</td>
<td>“ESWT appears to be a useful noninvasive treatment method that reduces the necessity for surgical procedures.”</td>
<td>Data suggest equal efficacy. May be underpowered for Thomsen scores.</td>
<td></td>
</tr>
<tr>
<td>Keizer 2002</td>
<td></td>
<td>5.0</td>
<td>N = 40 with tennis elbow (lateral elbow pain, pain with resisted wrist dorsiflexion, pain, not responsive to conservative treatment over 6 months duration. Botulinum injection 30-40 U into ECRB (second injection if did not develop sufficient paresis, n=8) vs. wrist extensor release (Hohmann operation). 24 months follow-up.</td>
<td>Good results at one year in botulinum 13/20 (65%) vs. surgery 15/20 (75%). At 2 years, 4 botulinum patients had undergone surgery. Excellent or good results in 75% botulinum vs. 85% surgery. “Botulinum toxin infiltration…may be an alternative for surgical treatment of tennis elbow.”</td>
<td>4 (20%) of botulinum eventually crossed over to surgery. Statistically negative results between groups, although trends in favor of surgery for overall results and pain with resisted wrist or MF extension.</td>
<td></td>
</tr>
</tbody>
</table>
Microtenotomy

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Score</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meknas 2008 RCT</td>
<td>4.0</td>
<td>N = 24 with lateral epicondyle tendinosis (lateral elbow pain plus pain with resisted wrist and digit extension), minimum duration 12 months of conservative treatment (NSAIDs, physiotherapy and at least 3 corticosteroid injections with demonstrated short-term benefit).</td>
<td>Extensor release and repair (Nirschl JBJS 1979) vs radiofrequency microtenotomy (Tolpaz Microdebrider electrode); 18 month follow-up.</td>
<td>VAS pain scores (pre/3/6/12 weeks/10-18 months): Extensor release (6.5/6.4/4.0/3.1/2.0) vs. microtenotomy (7.1/3.6/3.2/2.0/1.8). No difference in return to work (Extensor release 11.5±6.3 vs. microtenotomy 10.7±2.5 weeks, NS). Grip strength improved faster in microtenotomy (pre/12 weeks): extensor release (30.3/36.3kg) vs. microtenotomy (28.3/39.8), but not different between groups.</td>
<td>“Similar results were found with 2 operative methods for patients with lateral elbow tendinosis. In the group treated with RF microtenotomy, an earlier improvement in VAS scores was seen when compared with the release method.”</td>
<td>Randomization by share lot on day of operation. Data suggest faster improvement with microtenotomy.</td>
</tr>
</tbody>
</table>

Evidence for Medial Epicondylalgia

There is 1 high- and 1 moderate-quality RCT incorporated into this analysis. There are 2 low-quality RCTs(170, 292) (in Appendix 2).

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Score</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nirschl 2003 RCT</td>
<td>7.5</td>
<td>N = 199 with medial or lateral epicondylitis under 3 months duration. Diagnostic criteria not described.</td>
<td>Iontophoresis with 2.5ml dexamethasone sodium phosphate 0.4% injection vs. 2.5 ml saline solution. Both treatments at 40 mA-minutes, 6 treatments over 15 days; 1-month follow-up.</td>
<td>Dexamethasone favored over placebo group VAS pain improvement at 1 month (23 vs. 14, p = 0.012) and percentage global evaluation by investigator moderate or better (52 vs. 33, p = 0.013). Investigators’ pain evaluation score (p = 0.019) and investigators’ tenderness score (p <0.001) also favored Iontophoresis with dexamethasone. Number of patients with improvement in all 3 primary efficacy variables significantly favored dexamethasone (p = 0.039).</td>
<td>“Iontophoresis treatment was well tolerated by most patients and was effective in reducing symptoms of epicondylitis at short-term follow-up.”</td>
<td>Confounders addressed gender, age, symptom duration, prior treatments, and prior medications. Unknown how many patients had medial epicondylitis, but assume relatively few and no stratified analyses. Free to use other treatment modalities after 2-day follow-up visit. Patients who completed all 6 treatments in 10 days or less showed better results than those completing over</td>
</tr>
</tbody>
</table>

NYS WCB MTG – Elbow Disorders 139
Da
ta suggest modest efficacy of iontophoresis with dexamethasone.

Glucocorticosteroid Injections

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Score</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stahl 1997</td>
<td>8.5</td>
<td>N = 60 with medial epicondylitis (medial epicondylar pain, worse with work or sports, tenderness over flexor-pronator muscle mass, tenderness over medial epicondyle), increased pain with pronation of forearm and flexion of wrist against resistance). Mean durations 4 months.</td>
<td>Injections of methylprednisolone 40mg (1mL) plus 1mL of 1% lidocaine vs. 1mL of 1% lidocaine plus 1mL saline. All treated with NSAIDs, eliminate aggravating activities and physical therapy. 12 months follow-up.</td>
<td>Pain scores (pre/6 weeks/3 months/1 year): steroid (2.4±0.15/1.2±0.21/1.2±0.19/0.5±0.14) vs. placebo (2.3±0.15/1.9±0.19/1.3±0.19/0.6±0.22), p <0.03 only at 6 weeks.</td>
<td>"We believe that the improvement observed in both groups primarily reflects the natural history of the disorder, and we conclude that the local injection of steroids provides only short-term benefits in the treatment of medial epicondylitis."</td>
<td>Randomization appeared successful. There were no significant differences between groups for gender, age, duration of symptoms, pain phase at baseline, or number of dominant limbs affected. Study enrolled and conducted over several years. No power/sample size calculated. Data suggest efficacy in short but not long term.</td>
</tr>
</tbody>
</table>

Evidence for the Use of NSAIDs for Olecranon Bursitis

There is 1 moderate-quality RCT incorporated into this analysis.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study Type</th>
<th>Score</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith 1989</td>
<td>RCT</td>
<td>4.5</td>
<td>N = 42 males with nontraumatic and traumatic olecranon bursitis; 6 month follow-up.</td>
<td>All wore compression dressing around elbow and randomized into methylprednisolone acetate 20mg intrabursal injection plus naproxen 500mg BIx10days (n = 11) vs. methylprednisolone acetate plus placebo (n = 10) vs. naproxen BID (n = 10) vs. oral placebo (n = 10) for 10 days.</td>
<td>No differences between groups for bursal fluid (p>0.05). Groups treated with methylprednisolone acetate had reduced swelling after the first week and sustained improvement at 3 weeks vs. other groups (p=0.004).</td>
<td>"Intrabursal steroid injection seems to be superior to other modalities in controlling fluid accumulation from traumatic or idiopathic cases of nonseptic olecranon bursitis."</td>
<td>Most idiopathic (25), 16 traumatic, 1 gout. Some baseline differences. Cointerventions not well described. Data suggest injection superior. Injection plus NSAID trended longer period. Data suggest modest efficacy of iontophoresis with dexamethasone.</td>
</tr>
</tbody>
</table>
Evidence for the Use of Aspiration
There is 1 low-quality RCT in Appendix 2. (Weinstein 84)

Evidence for the Use of Glucocorticosteroid Injections for Olecranon Bursitis
There is 1 moderate-quality RCT incorporated into this analysis.

<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith 1989 RCT</td>
<td>4.5</td>
<td>N = 42 males with nontraumatic and traumatic olecranon bursitis; 6 month follow-up.</td>
<td>All wore compression dressing around elbow and randomized into methylprednisolone acetate 20mg intrabursal injection plus naproxen 500mg BIDx10days (n = 11) vs. methylprednisolone acetate plus placebo (n = 10) vs. naproxen BID (n = 10) vs. oral placebo (n = 10) for 10 days.</td>
<td>No differences between groups for bursal fluid (p>0.05). Groups treated with methylprednisolone acetate had reduced swelling after the first week and sustained improvement at 3 weeks vs. other groups (p = 0.004).</td>
<td>“Intrabursal steroid injection seems to be superior to other modalities in controlling fluid accumulation from traumatic or idiopathic cases of nonseptic olecranon bursitis.”</td>
<td>Most idiopathic (25), 16 traumatic, 1 gout. Some baseline differences. Cointerventions not well described. Data suggest injection superior. Injection plus NSAID trended towards best. NSAID vs. placebo negative. Underpowered for complications such as infection.</td>
</tr>
</tbody>
</table>

Evidence for the Use of Immobilization for Elbow Fractures
There are no quality studies evaluating the use of immobilization for elbow fractures. There is 1 low-quality RCT(401) in Appendix 2.

Evidence for the Use of Opioids for Elbow Fractures
There are no quality studies evaluating the use of opioids for patients with pain from elbow fractures.

Evidence for the Use of Surgery for Elbow Fractures
There is 1 moderate-quality RCT incorporated into this analysis.
Open reduction of fractures, then fixed with 2.0 mm diameter polylactide pins with original length of 35 mm (polylactide, n = 83) vs. countersunk metal lag screws (control, n = 82). Post-op treatment with physiotherapy for up to 6 weeks. Follow up at 4-6 weeks, 1 year, and 2 years post-op.

Broberg and Morrey Elbow Scores at 2 year follow-up: polylactide (93.3±7.2) vs. control (90.9±7.5), p=0.175. Good or excellent results in 96% vs. 92% (NS).

“Polylactide pins can be recommended as reliable implants for the internal fixation of small, intraarticular, non-weight-bearing fractures such as displaced radial head fractures.”

Evidence for the Use of NSAIDs and Acetaminophen for Elbow Dislocation
There are no quality studies evaluating the use of NSAIDs and acetaminophen for elbow dislocation.

Evidence for the Use of Opioids for Elbow Dislocation
There are no quality studies evaluating the use of opioids for elbow dislocation.

Evidence for the Use of Opioid Anesthetic Intraarticular Injections
There are no quality studies evaluating the use of opioid anesthetic intraarticular injections for pre- or post-reduction pain.

Evidence for the Use of Opioid Anesthetic Intraarticular Injections
There are no quality studies evaluating the use of opioid anesthetic intraarticular injections for pre- or post-reduction pain.

Evidence for the Use of Immobilization and Surgery
There is 1 moderate-quality RCT incorporated into this analysis.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Josefsson 1987</td>
<td>RCT</td>
<td>5.0</td>
<td>N = 30 with acute elbow dislocation</td>
<td>Surgical treatment (exploration, suture, re-fix ligaments) vs. non-surgical treatment (immobilized 17 days). Mean 31 and 24 month follow-ups.</td>
<td>No differences in ranges of motion, grip strength, pain, instability. No differences in loss of flexion. No recurrent dislocations in either group.</td>
<td>“Iontophoresis treatment was well tolerated by most patients and was effective in reducing symptoms of epicondylitis at short-term follow-up.”</td>
<td>Data suggest no advantage to surgical treatment.</td>
</tr>
</tbody>
</table>

Evidence for the Use of Opioids for Elbow Sprains
There are no quality studies evaluating the use of opioids for patients with elbow sprains.
Evidence for the Use of Slings for Elbow Sprains
There are no quality studies evaluating the use of slings for elbow sprains.

Evidence for the Use of NSAIDs and Acetaminophen for Biceps Tendinosis and Tears
There are no quality studies evaluating the use of NSAIDs and acetaminophen for biceps tendinosis and tears.

Evidence for the Use of Opioids for Biceps Tendinosis
There are no quality studies evaluating the use of opioids for patients with biceps tendinosis or ruptures.

Evidence for the Use of Exercise for Ulnar Neuropathy at the Elbow
There is 1 moderate-quality RCT incorporated into this analysis. There is 1 low-quality RCT in Appendix 2.

<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svernlov 2009 RCT</td>
<td>4.5</td>
<td>N = 70 with mild to moderate cubital tunnel syndrome [Dellon grade; numbness and paraesthesias of ulnar forearm and hand, pain over ulnar nerve at elbow, tenderness and positive Tinel’s over cubital tunnel (location unclear), and subjective intermittent weakness of hand intrinsic]. At least 3 months duration</td>
<td>Night splinting (pre-fabricated neoprene elbow brace, Rehband support 4823) vs. nerve gliding (6 positions, maintained for 30s, 3 reps, BID, gradually increased) (Byron 95) vs. control (education program as below). All received education on anatomy, probable mechanisms, avoidance of activities provoking symptoms; 6-month follow-up.</td>
<td>Canadian Occupational Performance Measures of performance (pre/6 months): splint (4.8±1.4/6.7±2.3) vs. nerve gliding (5.1±1.6/7.9±1.7) vs. information controls (4.4±1.3/6.5±1.8). Satisfaction scores also increased, but no differences between treatment groups.</td>
<td>“Patients with mild or moderate symptoms have a good prognosis if they are informed of the causes of the condition and how to avoid provocation.”</td>
<td>NCS criteria not noted, and inching technique to localize to the cubital tunnel not stated. Duration of symptoms shorter in control (9.5 month) vs. splint (13.5 month) or nerve gliding (10.5 month), unclear if statistically significant but potential bias against splinting. Compliance unclear. Dropouts high especially in night splint group, yet no ITT analysis. Authors state most patients do not require NCS as 76% with typical symptoms were normal, 75% improved. Data suggest equal (in)efficacy; duration of symptoms at baseline concerning to have biased against night splint.</td>
</tr>
</tbody>
</table>

Evidence for the Use of Glucocorticosteroids for Ulnar Neuropathy at the Elbow
There is 1 low-quality RCT in Appendix 2.

Evidence for the Use of Nocturnal Elbow Splinting
There is 1 moderate-quality RCT incorporated into this analysis.
<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svernlov 2009 RCT</td>
<td>4.5</td>
<td>N = 70 with mild to moderate cubital tunnel syndrome [Dellon grade; numbness and paraesthesias of ulnar forearm and hand, pain over ulnar nerve at elbow, tenderness and positive Tinel’s over cubital tunnel (location unclear), and subjective intermittent weakness of hand intrinsic]. At least 3 months duration.</td>
<td>Night splinting (pre-fabricated neoprene elbow brace, Rehband support 4823) vs. nerve gliding (6 positions, maintained for 30s, 3 reps, BID, gradually increased) vs. control (education program as below). All received education on anatomy, probable mechanisms, and avoidance of activities provoking symptoms. 6-months follow-up.</td>
<td>Canadian Occupational Performance Measures of performance (pre/6mo): splint (4.8±1.4/6.7±2.3) vs. nerve gliding (5.1±1.6/7.9±1.7) vs. information controls (4.4±1.3/6.5±1.8). Satisfaction scores also increased, but no differences between treatment groups.</td>
<td>"Patients with mild or moderate symptoms have a good prognosis if they are informed of the causes of the condition and how to avoid provocation."</td>
<td>NCS criteria not noted; inching technique to localize to cubital tunnel not stated. Symptoms shorter in control (9.5 months) vs. splint (13.5 months) or nerve gliding (10.5 months), unclear if statistically significant but potential bias against splinting. Compliance unclear. Dropouts high especially in night splint group, yet no ITT analysis. Authors state most patients do not require NCS as 76% with typical symptoms were normal, 75% improved. Data suggest equal (in)efficacy, but duration of symptoms at baseline concerning to have biased against night splint.</td>
</tr>
</tbody>
</table>

Evidence for the Use of Surgery for Ulnar Neuropathy

There are 5 moderate-quality RCTs incorporated into this analysis.

<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Decompression vs. Anterior Subcutaneous Transposition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartels 2005 RCT</td>
<td>7.0</td>
<td>N = 152 with ulnar nerve palsy (sensory disturbance in digits 4-5 and ulnar hand, weak hand muscles with ulnar innervations, failure of conservative treatment, NCS confirmed. Duration at least 3 months</td>
<td>Simple decompression vs. anterior subcutaneous transposition. Encouraged immediate post-operative use; 1 year follow-up.</td>
<td>Completely free of signs/ symptoms SD vs. ATS 6 weeks after surgery: 12/75 (16.0%) vs. 17/77 (22.1%) (RR 0.7, 95% CI 0.4-1.4). At 1 year after surgery free of signs and symptoms SD 36/75 (48.0%) vs. ATS 46/77 (59.7%) (RR 0.8, 95% CI 0.6-1.1). Difference in outcome not statistically significant. Total complications in 7 simple decompression vs. 23 transposition, most sensibility loss around scar (14). (RR0.32, 95% CI 0.14-0.69) p<0.05 between groups.</td>
<td>"Although simple decompression and anterior subcutaneous transposition seemed to be equally effective methods of treatment, we favor simple decompression because of its surgical simplicity (less operative time and fewer complications)."</td>
<td>NCS criteria stated, although inching technique not apparently performed to localize lesion. Lack of independent investigator examination of most post-operatively (30 randomly selected examined by independent neurosurgeon). Data suggest no meaningful differences in outcome, but higher complication rate with transposition.</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Study Design</td>
<td>Study Population</td>
<td>Intervention</td>
<td>Comparison</td>
<td>Findings</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Nabhan</td>
<td>2005</td>
<td>RCT</td>
<td>N = 66</td>
<td>Simple decompression (8cm incision) vs. anterior subcutaneous transposition</td>
<td>9-month follow-up</td>
<td>Mean VAS scores comparing simple decompression vs. transposition (pre/3/9 months): 6/1/1 vs. 6/2/1 (NS). Ulnar intrinsic motor power decompression (4/5/5) vs. transposition (4/4/5) NS. No differences in sensory deficits. vs. 6/1 vs. 2/1 vs. 1. No differences were found in sensory deficits. Complications not reported.</td>
</tr>
</tbody>
</table>
| Gervasio | 2005 | RCT | N = 70 | Simple decompression (bupivacaine 0.5% local, 4cm proximal to 4cm distal to epicondyle along length of ulnar nerve) vs. anterior deep submuscular transposition with z-lengthening (Learmonth’s technique, general anesthesia). | 47 months follow-up | Bishop scoring system simple decompression 54.3% excellent, 25.7% good, 20% fair vs. transposition 51.43% excellent, 31.43% good, 17.14% fair. No significant differences in outcomes. No differences in complications. Of those with no EMG/NCS sensory responses pre-operatively, 10/30 (33%) simple vs. 9/29 (31.0%) transposition had normal responses post-op (remainder had responses, though abnormal). For motor findings, 6/30 (20.0%) simple vs. 4/17 (23.5%) transposition had normalization (remainder regained some responses). | "No statistically significant difference was found between the two groups with regard to the clinical or the electrophysiologic outcome. The surgical treatment gains in Group A and B were 80% and 82.86%, respectively (good to excellent results)."
| Biggs | 2006 | RCT | N = 44 | Simple decompression (4cm proximal to 4cm distal to epicondyle incision, decompressed along length of nerve) vs. anterior submuscular transposition. | | Simple decompression McGowan grades improved 13/23 (57%) vs. transposition 9/21 (45%), NS. LSUMC grading improved in 61% decompression vs. 67% transposition, NS. In moderate to high grade cases, 14/17 (82%) of decompression vs. 13/19 (68%) | "Idiopathic symptomatic ulnar nerve compression at the elbow is adequately treated by both neurolysis in situ and submuscular transposition. Submuscular transposition NCS criteria not provided and unclear if pathology localized to cubital tunnel vs. condylar groove. Two groups not dissimilar, but trend towards lower grade lesions in simple decompression group (26% vs. 31%)." |

Simple Decompression vs. Anterior Submuscular Transposition

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>VAS Score</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Findings</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Gervasio 2005 | 5.5 | 4.0 | N = 70 | Simple decompression (bupivacaine 0.5% local, 4cm proximal to 4cm distal to epicondyle along length of ulnar nerve) vs. anterior deep submuscular transposition with z-lengthening (Learmonth’s technique, general anesthesia). | 47 months follow-up | Bishop scoring system simple decompression 54.3% excellent, 25.7% good, 20% fair vs. transposition 51.43% excellent, 31.43% good, 17.14% fair. No significant differences in outcomes. No differences in complications. Of those with no EMG/NCS sensory responses pre-operatively, 10/30 (33%) simple vs. 9/29 (31.0%) transposition had normal responses post-op (remainder had responses, though abnormal). For motor findings, 6/30 (20.0%) simple vs. 4/17 (23.5%) transposition had normalization (remainder regained some responses). | "No statistically significant difference was found between the two groups with regard to the clinical or the electrophysiologic outcome. The surgical treatment gains in Group A and B were 80% and 82.86%, respectively (good to excellent results)."
<p>| Nabhan 2005 RCT | 4.5 | 4.0 | N = 66 | Simple decompression (8cm incision) vs. anterior subcutaneous transposition (technique not referenced). | 9-month follow-up | Mean VAS scores comparing simple decompression vs. transposition (pre/3/9 months): 6/1/1 vs. 6/2/1 (NS). Ulnar intrinsic motor power decompression (4/5/5) vs. transposition (4/4/5) NS. No differences in sensory deficits. vs. 6/1 vs. 2/1 vs. 1. No differences were found in sensory deficits. Complications not reported. | "We recommend simple decompression of the nerve in cases without deformity of the elbow, as this is the less invasive operative procedure." |
| Biggs 2006 RCT | 4.0 | 4.0 | N = 44 | Simple decompression (4cm proximal to 4cm distal to epicondyle incision, decompressed along length of nerve) vs. anterior submuscular transposition. | | Simple decompression McGowan grades improved 13/23 (57%) vs. transposition 9/21 (45%), NS. LSUMC grading improved in 61% decompression vs. 67% transposition, NS. In moderate to high grade cases, 14/17 (82%) of decompression vs. 13/19 (68%) | "Idiopathic symptomatic ulnar nerve compression at the elbow is adequately treated by both neurolysis in situ and submuscular transposition. Submuscular transposition NCS criteria not provided and unclear if pathology localized to cubital tunnel vs. condylar groove. Two groups not dissimilar, but trend towards lower grade lesions in simple decompression group (26% vs. 31%)." |</p>
<table>
<thead>
<tr>
<th>General anesthesia for all. Early mobilization; 1 year follow-up.</th>
<th>transposition improved.</th>
<th>was associated with a higher incidence of complications. The authors therefore suggest the simpler procedure of neurolysis in situ as the treatment of choice. Submuscular transposition remains appropriate in certain circumstances.</th>
<th>9.5%). No independent assessment of outcomes. More deep infections in transposition group (3 vs. 0); superficial infections in 19.0% transposition vs. 8.7% decompression. One dehiscence in transposition group. Data suggest trends of equivalent results, fewer complications with simple decompression.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geutjens 1996 RCT</td>
<td>N = 43 with 47 ulnar neuropathy at elbow (clinical evidence of ulnar nerve lesion at elbow; slowed ulnar nerve conduction, no RA, no valgus deformity >5° compared with other elbow. Required persistent symptoms at least 3 months.</td>
<td>Medial epicondylectomy (King and Morgan 59) vs. anterior transposition (Adams 85). Mean 4.5 years follow-up.</td>
<td>No patients with spontaneous elbow pain post-operatively. Pain in hand ratings: 0±0 epicondylectomy vs. 0.45±0.82 transposition, p = 0.029. No differences in muscle atrophy or muscle power, or motor nerve conduction. Patient’s opinion of cure was: epicondylectomy 12/25 (48%) vs. 6/22 (27.3%), p = 0.027. 92% of epicondylectomy patients would have procedure again vs. 68% transposition, p = 0.039.</td>
</tr>
</tbody>
</table>
Appendix Two: Low-quality Randomized Controlled Trials and Non-randomized Studies

The following low-quality randomized controlled studies (RCTs) and other non-randomized studies were reviewed by the Evidence-based Practice Elbow Panel to be all inclusive, but were not relied upon for purpose of developing this document’s guidance on treatments because they were not of high quality due to one or more errors (e.g., lack of defined methodology, incomplete database searches, selective use of the studies and inadequate or incorrect interpretation of the studies’ results, etc.), which may render the conclusions invalid. ACOEM’s Methodology requires that only moderate- to high-quality literature be used in making recommendations. (540)

LATERAL EPICONDYLALGIA

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAIIDs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stull 1986</td>
<td>RCT</td>
<td>2.0</td>
<td>N = 38 with "tennis elbow"</td>
<td>Diflunisal 1,000mg initially, followed by 500mg BID vs. 500mg of naproxen initially, followed by 250mg QID.</td>
<td>Overall pain relief, self reported favored diflunisal (100% good to excellent) vs naproxen (71% good to excellent), (p = 0.019). Self reported elbow limitations favored diflunisal, p = 0.039. No statistically significant differences between patients: 1) overall elbow condition; 2) overall rating of elbow pain; 3) elbow flexion; 4) elbow extension; 5) pronation; 6) supination; 7) pain reduction; 8) reduction in swelling; and 9) reduction in tenderness.</td>
<td>"Diflunisal and naproxen significantly reduce pain and inflammation associated with this condition. However, diflunisal provided more effective pain relief in the group studied. Prompt pain relief allows rapid progression to physical therapy and a return to normal activities. We also believe that diflunisal provides advantages of a longer-lasting effect and less frequent dosing, which may promote better patient compliance."</td>
<td>Open-label. Randomization unclear. Only baseline comparability of groups that is given relates to gender. Tables only have 16 or 17 in each group, as some participants apparently did not report. Most analyses were not statistically significant; however there were small numbers with multiple individuals refusing to answer questions, which may be sufficient to skew results. No placebo group.</td>
</tr>
<tr>
<td>Adelaar 1987</td>
<td>RCT</td>
<td>1.5</td>
<td>N = 18 with lateral, medial or “posterior” epicondylitis</td>
<td>Diflunisal (initial dose of diflunisal 1000mg followed by diflunisal 500mg every 12 hours for a period of up to 15 days) vs. naproxen.</td>
<td>No statistically significant differences for any categories between study drugs or between pretest and post-test results at the fifth level single tail distribution. One patient receiving diflunisal developed transient nausea and stomach cramps though both study agents were generally well tolerated.</td>
<td>"Diflunisal and naproxen were generally effective in the treatment of mild to moderate pain associated with epicondylitis; there were no significant differences between the drugs."</td>
<td>Methods not well described. Open-label. Small study population. Short duration (15 days). No placebo group.</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Allocation N</td>
<td>Description</td>
<td>Intervention</td>
<td>Outcome</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Toker 2008</td>
<td>1.5</td>
<td>N=21 with lateral elbow pain with confirmed tennis elbow after physical examination</td>
<td>Depomedrol 1mL plus prilocaine 1mL plus oral diclofenac plus topical etofenamate cream (n=11) vs. oral and topical anti-inflammatory treatment (n=10).</td>
<td>Anti-inflammatory group showed a significant improvement in pain scores from before and after treatment (p=0.026). The injection group showed a significant improvement as well (p=0.003).</td>
<td>“[S]ignificantly enhanced efficacy of the combination treatment used in this study might be limited to the short-term and that adverse effects of steroids on the tendons should be taken into consideration.”</td>
<td>Sparse details. Unknown follow-up duration. No medication doses provided.</td>
<td></td>
</tr>
<tr>
<td>Liow 2002</td>
<td>3.0</td>
<td>N=60 patients with Mason 1 and 2 radial head fractures</td>
<td>Immediate (24 hours after injury) exercise program to restore elbow movement (group A, n=30) vs. 5 day rest in broad arm sling before exercise program (group B, n=30). Follow ups at 1, 4 weeks, and 3 months.</td>
<td>VAS (mean±SD): week 1 (group A 5.9±2.0 vs. group B 7.6±1.9), p=0.002; week 4 and 12 (NS). ROM: extension deficit (NS); flexion deficit (NS); supination (NS); pronation (NS). Elbow strength and grip strength: extension (NS); flexion (NS); supination week 1 (58±2.9 vs. 47±2.2, p=0.0022), week 4 and 12 (NS); pronation (NS); grip strength (NS). Morrey Score: pain week 1 (10.3 vs. 6.3, p=0.009), week 4 and 12 (NS); ROM (NS); strength week 1 (16.1 vs. 14.7, p=0.035), week 4 and 12 (NS); function week 1 (8.2 vs. 5.4, p=0.012), week 4 and 12 (NS); total score week 1 (54.4 vs. 43.5, p=0.005), week 4 and 12 (NS).</td>
<td>“[T]his study has demonstrated the safety and early benefit of immediate active mobilization in Mason 1 and 2 radial head fractures. We have also shown that a delay of 5 days before mobilization was not detrimental and the final outcome of the two groups were similar.”</td>
<td>Quasi-randomized by provider preference (next available fracture clinic). Data support early mobilization for minimally displaced fx.</td>
<td></td>
</tr>
<tr>
<td>Burton 1988</td>
<td>3.0</td>
<td>N = 33 with tennis elbow (pain, tenderness and at least 2 of pain with increased grip/twist/lift, pain with</td>
<td>All received manual therapy, 2 times a week for 1st week, then 1 times a week. Strap (Chen strap) all day vs. benzydamine topical cream 5 times a day vs.</td>
<td></td>
<td>“The results do not show any therapeutic advantage from the use of these adjuncts, when assessed over three weeks, though the majority of patients in all groups were significantly improved.”</td>
<td>Sparse details. Small sample sizes among 4 groups. No short or longer term followup. Likely underpowered for differences, especially in relatively acute population with better prognoses.</td>
<td></td>
</tr>
</tbody>
</table>

Topical NSAIDs and Other Agents

- **Liow 2002**
 - RCT
 - N=60 patients with Mason 1 and 2 radial head fractures
 - Immediate (24 hours after injury) exercise program to restore elbow movement (group A, n=30) vs. 5 day rest in broad arm sling before exercise program (group B, n=30). Follow ups at 1, 4 weeks, and 3 months.
 - VAS (mean±SD): week 1 (group A 5.9±2.0 vs. group B 7.6±1.9), p=0.002; week 4 and 12 (NS). ROM: extension deficit (NS); flexion deficit (NS); supination (NS); pronation (NS). Elbow strength and grip strength: extension (NS); flexion (NS); supination week 1 (58±2.9 vs. 47±2.2, p=0.0022), week 4 and 12 (NS); pronation (NS); grip strength (NS). Morrey Score: pain week 1 (10.3 vs. 6.3, p=0.009), week 4 and 12 (NS); ROM (NS); strength week 1 (16.1 vs. 14.7, p=0.035), week 4 and 12 (NS); function week 1 (8.2 vs. 5.4, p=0.012), week 4 and 12 (NS); total score week 1 (54.4 vs. 43.5, p=0.005), week 4 and 12 (NS).
 - “[T]his study has demonstrated the safety and early benefit of immediate active mobilization in Mason 1 and 2 radial head fractures. We have also shown that a delay of 5 days before mobilization was not detrimental and the final outcome of the two groups were similar.”
 - Quasi-randomized by provider preference (next available fracture clinic). Data support early mobilization for minimally displaced fx.
<table>
<thead>
<tr>
<th>Study</th>
<th>Duration</th>
<th>N</th>
<th>Description</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kroll 1989</td>
<td><3 months (mean 4.8 weeks)</td>
<td>173</td>
<td>Acute musculo-skeletal disorders, mean 2-5 days (not well described proportion of: sprains and tendinitis of ankle sprain, AC joint sprain, supraspinatus tendinitis, Achilles tendinitis, epicondylitis)</td>
<td>Piroxicam 0.5% gel (3 cm of gel corresponding to 5 mg piroxicam) QID vs. diclofenac 1.16% (5 to 10 cm of gel corresponding to 20 to 40 mg diclofenac) QID for up to 14 days. "Restriction of active movement" (baseline/2/4 days): piroxicam (50.0±2.77/34.2±2.26/15.0±1.39) vs. diclofenac (50.9±2.92/37.8±2.63/9.8±1.81). Reductions in mean pain scores on joint movement, and tenderness also NS.</td>
<td>The results of this study show that piroxicam 0.5% gel and diclofenac 1.16% gel are equally effective and well tolerated in the treatment of selected acute sprains and tendinitis.</td>
</tr>
<tr>
<td>Luginbühl 2008</td>
<td>2 weeks to 18 months</td>
<td>36</td>
<td>With lateral epicondylitis</td>
<td>Ultrasound (3MHz, 1.5W/cm²) with aquasonic 100 vs. phonophoresis (ultrasound with hydrocortisone 1% cream with Mean subjective scores of pain at rest (pre/post): US 5.6/5.1 vs. Phono 14.3/12.2 vs. US plus clasp 5.6/7.8 vs. Phono plus clasp 6.1/5.8. (Graph and data do not match. Graph suggests phono plus</td>
<td>"Our study has confirmed that ultrasound treatment does bring about a favourable response in the majority of patients. We found no suggestion that the application of a hydrocortisone</td>
</tr>
<tr>
<td>Holdsworth 1993</td>
<td>3.0 weeks</td>
<td>36</td>
<td>With lateral epicondylitis, duration 2 weeks to 18 months</td>
<td>Ultrasound (3MHz, 1.5W/cm²) with aquasonic 100 vs. phonophoresis (ultrasound with hydrocortisone 1% cream with</td>
<td>Mean subjective scores of pain at rest (pre/post): US 5.6/5.1 vs. Phono 14.3/12.2 vs. US plus clasp 5.6/7.8 vs. phono plus clasp 6.1/5.8. (Graph and data do not match. Graph suggests phono plus</td>
</tr>
</tbody>
</table>

Tennis Elbow Straps, Bands, Supports, and Braces

<table>
<thead>
<tr>
<th>Study</th>
<th>Duration</th>
<th>N</th>
<th>Description</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holdsworth 1993</td>
<td>3.0 weeks</td>
<td>36</td>
<td>With lateral epicondylitis, duration 2 weeks to 18 months</td>
<td>Ultrasound (3MHz, 1.5W/cm²) with aquasonic 100 vs. phonophoresis (ultrasound with hydrocortisone 1% cream with</td>
<td>Mean subjective scores of pain at rest (pre/post): US 5.6/5.1 vs. Phono 14.3/12.2 vs. US plus clasp 5.6/7.8 vs. phono plus clasp 6.1/5.8. (Graph and data do not match. Graph suggests phono plus</td>
</tr>
</tbody>
</table>

Open label. Many disorders. Short term (therapy was begun within 3-5 days of injury and continued for up to 14 days). Study did not differentiate results by injury location (i.e., elbow, ankle, or shoulder), only by treatment (piroxicam vs. diclofenac) and injury type (sprains and tendinitis). Data suggest equal efficacy.
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Study Design</th>
<th>Participants</th>
<th>Intervention 1</th>
<th>Intervention 2</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burton 1988</td>
<td></td>
<td>RCT</td>
<td>N = 33</td>
<td>Tennis elbow (pain, tenderness; at least 2 of pain with increased grip/twist/lift, pain with resisted MF extension, pain with pronation/wrist flexion). Duration <3 months (mean 4.8 weeks).</td>
<td>All received manual therapy, 2 times a week for 1st week, then once a week. Strap (Chen strap) all day vs. Benzydamine topical cream 5 times a day vs. strap plus NSAID cream. No follow-up beyond 3 week trial.</td>
<td>Mean pain scores (pre/3 days/1 week/3 weeks): Strap plus NSAID (3.6/2.8/2.5/1.5) vs. NSAID cream (3.0/2.5/1.7/1.0) vs. Strap (3.2/2.8/2.5/1.6) vs. Manipulation only (3.2/2.8/2.5/1.5). “The results do not show any therapeutic advantage from the use of these adjuncts, when assessed over three weeks, though the majority of patients in all groups were significantly improved.” Sparse details. Small sample sizes among 4 groups. No short or longer term followup. Likely underpowered for differences, especially in relatively acute population with better prognoses.</td>
</tr>
<tr>
<td>Altan 2008</td>
<td></td>
<td>Pseudo-randomized clinical trial</td>
<td>N = 50 (ages 34-60) with diagnosis of lateral epicondylitis (lateral elbow pain, tenderness, pain with resisted wrist dorsiflexion). Duration less than 12 weeks.</td>
<td>Lateral epicondyle bandage vs wrist splint (Rehband). To be worn “continuously”; 6 weeks follow-up.</td>
<td>Good responses at 2 and 6 weeks in 33.3% vs. 48% and at 6 weeks in 66.7% vs. 72% (NS). Lateral epicondyle bandage improved in all parameters (Pain at rest, pain with movement, sensitivity, algometer score, and hand grip strength) at 6 weeks. Wrist splint group also showed a significant improvement in all parameters by 6 weeks. No differences between groups other than at 2 weeks, where wrist splint favored.</td>
<td>“Epicondyle bandage was not found to be superior to wrist splint in our study, we may suggest that it could be favored over splint since it is more practical and cosmetically acceptable.” Every other allocation. Mostly subacute patients (mean ~6 weeks). Data mostly suggest wrist splint and lateral epicondyle bandage equally efficacious.</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>N</td>
<td>Treatment</td>
<td>Outcome</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Clements 1993</td>
<td>Pseudo-randomized clinical trial</td>
<td>2.5</td>
<td>N = 16 workers performing repetitive tasks with lateral epicondylitis</td>
<td>Custom-made splint plus physiotherapy (US, ice stretch, strengthening) vs. physiotherapy alone. PT 3 times a week; 4 weeks follow-up.</td>
<td>Reported less pain, and grip-affected arm strength also better in splint plus PT group. (minimal data provided).</td>
<td>“[T]his custom-made splint is of value in facilitating the recovery from lateral epicondylitis.”</td>
</tr>
<tr>
<td>Garg 2010</td>
<td>RCT</td>
<td>2.0</td>
<td>N = 70 lateral epicondylitis, 42 (44 elbow) not lost to follow-up; acute patients (duration not described)</td>
<td>Velcro elbow strap vs. thumb spica wrist extension splint; 6 weeks follow-up.</td>
<td>American Shoulder and Elbow Society scores (pre/post): elbow strap (35.2±16.9/51.1±19.0) vs. wrist splint (40.7±25.2/54.3±16.6, p = 0.60).</td>
<td>“[T]he wrist extension splint allows a greater degree of pain relief than does the forearm strap brace for patients with lateral epicondylitis.”</td>
</tr>
<tr>
<td>Dwars 1990</td>
<td>RCT</td>
<td>1.5</td>
<td>N = 120 patients with tennis elbow</td>
<td>Elbow support (Epitrain) worn all day (n = 60) vs. physical therapy (friction massage plus stretching) (n = 60) for 6 weeks</td>
<td>No difference between groups for pain changes. Patients with elbow support more satisfied vs. physical therapy group.</td>
<td>“[T]he favorable results warrant the use of the elbow support for the treatment of tennis elbow.”</td>
</tr>
<tr>
<td>Jafarian 2009</td>
<td>Experimental, Randomized Crossover Study.</td>
<td>N/A</td>
<td>N=52 patients with lateral epicondylitis is for at least 3 months.</td>
<td>All patients used a placebo, counterforce elbow strap, counterforce elbow sleeve, and a wrist splint in a randomized order.</td>
<td>Both elbow orthoses and wrist orthosis superior for pain-free grip strength vs. placebo (p=0.02). Values for pain-free grip were 135±77 (22-404) for placebo, 156±88 (20-466) for elbow strap, 156±91 (14-440) for elbow sleeve, and 129±74 (17-387) for wrist splint, p≤0.003. The values for the maximum grip were 161±95 (28-510) for placebo, 174±97 (22-567) for elbow strap, 175±95 (22-484) for elbow sleeve, and 142±73 (13-369) for wrist splint.</td>
<td>“The use of the 2 types of elbow orthoses (strap and sleeve) resulted in an immediate increase in pain-free grip strength.”</td>
</tr>
</tbody>
</table>

Splints – Experimental Studies

No follow-up as experimental only. Data suggest elbow strap or sleeve may be superior to wrist splint or brace for pain free grip, however, without clinical follow-up, no firm conclusions for treatment possible.
<table>
<thead>
<tr>
<th>Study</th>
<th>Methodology</th>
<th>N/A</th>
<th>Population</th>
<th>Interventions</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ng 2004</td>
<td>Experiment al Study</td>
<td>N=15 patients with lateral humeral epicondylitis in their dominant arm.</td>
<td>Control vs. brace without tension vs. brace with 25 N of tension vs. brace with 50 N of tension.</td>
<td>For within-subject effect of brace, significant (p=0.01). Univariate tests revealed significant differences for wrist proprioception (p=0.032) and passive wrist extensors stretching pain threshold (P=0.05). Mean±SD joint position error comparing no brace vs. brace 0N vs. brace 25N vs. brace 50N: 0.5±4.6 vs. 0.3±5.0 vs. 2.4±4.9 (p<0.05) vs. 0.7±4.8; p<0.32.</td>
<td>“The counterforce forearm brace had no effect on isokinetic wrist extensor strength and stretch reflex latency of the extensor carpi ulnaris muscle in subjects with lateral humeral epicondylitis.”</td>
<td>Experimental Study. No clinical follow-up. Data suggest counterforce brace increases pain threshold to passive stretch. Clinical relevance uncertain.</td>
</tr>
<tr>
<td>Luginbühl 2008</td>
<td>RCT</td>
<td>N = 36 enrolled (6 dropped out); 29 (30 elbows) with tennis elbow with no more than 3 injections in prior 6 months.</td>
<td>All 2-3mL injection triamcinolone/ Kenacort 40mg plus 1% Scandicain. Forearm support band vs. progressive isometric strengthening exercises vs. combination.</td>
<td>Mean modified Nirschl Pettrone scores (pre/ last): band (3.7±0.7/2.6 ±1.4) vs. exercise (3.4± 0.7/1.7±1.3) vs. combination (3.1±0.7/ 1.8±1.4), NS. Subjective improvements of much better or better in 5/5 (50%) vs. 7/10 (70%) vs. 7/10 (70%). No differences in grip strength (p = 0.29).</td>
<td>“We could not show any beneficial effect either for the forearm support band or for the strengthening exercises.”</td>
<td>Trial consists of fairly resistant cases, thus generalizability of results may be similarly limited. High dropouts at year 1. Trend towards worse cases at baseline for band then exercise, may bias in favor of combination.</td>
</tr>
<tr>
<td>Croisier 2007</td>
<td>Quasi Randomized</td>
<td>N=92 with unilateral chronic lateral epicondylar tendinopathy.</td>
<td>Passive standard rehabilitation program (control group) (n=46) vs. passive standard rehabilitation plus eccentric strength exercises (n=46).</td>
<td>By end of treatment, treatment group had a significantly lower VAS pain score compared to control (p<0.001). After treatment both groups improved in disability, but treatment group improved significantly compared to control (p<0.001).</td>
<td>“A patient with chronic lateral epicondylar tendinopathy has more than two times a greater chance of obtaining relief with eccentric intervention.”</td>
<td>Quasi randomized with matching on age, gender and activity level. Timing appears variable. Many details sparse.</td>
</tr>
<tr>
<td>Tyler 2010</td>
<td>RCT</td>
<td>N=21 with chronic lateral epicondylitis for 6 weeks or longer.</td>
<td>Eccentric training (n=11) vs. standard treatment (n=10).</td>
<td>The eccentric group improved significantly in DASH (p=0.01), VAS pain (p=0.002), combined strength (p=0.011), and tenderness deficit (p=0.003) compared to the standard group.</td>
<td>“All outcome measures for chronic lateral epicondylitis were markedly improved with the addition of an eccentric wrist extensor exercise to standard physical therapy, compared with physical therapy without the isolated eccentric exercise.”</td>
<td>Small groups. Many details sparse. Data suggest eccentric group modestly superior.</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>N</td>
<td>Design and Intervention Details</td>
<td>Results</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>----</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Clements 1993 Pseudorandomized clinical</td>
<td>2.5</td>
<td>N = 16 workers performing repetitive tasks with lateral epicondylitis.</td>
<td>Custom-made splint plus physiotherapy (US, ice stretch, strengthening) vs. physiotherapy alone. PT 3 times a week; 4 weeks follow-up.</td>
<td>Reported less pain, and grip-affected arm strength also better in splint plus PT group. (minimal data provided).</td>
<td>“[T]his custom-made splint is of value in facilitating the recovery from lateral epicondylitis.”</td>
<td></td>
</tr>
<tr>
<td>Svernlöv 2001 RCT</td>
<td>2.0</td>
<td>N = 38 with lateral epicondylalgia. All lateral elbow pain, tender to palpation, pain with resisted wrist extension, positive middle finger test. Mean durations 8.4 to 10.7 months.</td>
<td>Group S (stretching, contract-relax-stretching program) vs. Group E (eccentric, eccentric exercises). Daily HEP exercises for 12 weeks. Forearm bands with activity and wrist support nightly in both groups. 12 months follow-up.</td>
<td>Mean VAS scores before training vs. after 3 months: At rest: 0.9 vs. 0.1; p <0.0001. At palpation: 5.0 vs. 2.3; p <0.0001. Pain on isometric testing: 5.3 vs. 1.3; p = 0.0002. Pain during middle finger test: 5.5 vs. 2.4; p <0.0001. Pain during grip strength testing: 2.9 vs. 0.6; p <0.0001. Complete recovery in 12/17 (71%) of eccentric exercise vs. 7/18 (39%) stretching, p = 0.09.</td>
<td>“The eccentric training regime can considerably reduce symptoms in a majority of patients with lateral humeral epicondylalgia, regardless of duration, and is possibly superior to conventional stretching.”</td>
<td></td>
</tr>
<tr>
<td>Dwars 1990 RCT</td>
<td>1.5</td>
<td>N = 120 patients with tennis elbow. Elbow support (Epitrain) worn all day (n = 60) vs. physical therapy (friction massage plus stretching) (n = 60) for 6 weeks.</td>
<td>No difference between groups for pain changes. Patients with elbow support more satisfied vs. physical therapy group.</td>
<td>Mean subjective scores of pain at rest (pre/post): US 5.6/5.1 vs. Phono 14.3/12.2 vs. US plus clasp 5.6/7.8 vs. phono plus clasp 6.1/5.8. (Graph and data do not match. Graph suggests phono plus clasp far worse, but data suggest phono alone did worse).</td>
<td>“[T]he favorable results warrant the use of the elbow support for the treatment of tennis elbow.”</td>
<td></td>
</tr>
<tr>
<td>Holdsworth 1993 RCT</td>
<td>3.0</td>
<td>N = 36 with lateral epicondylitis. Duration 2 weeks-18 months.</td>
<td>Ultrasound (3MHz, 1.5W/cm²) with aquasonic 100 vs. phonophoresis (ultrasound with hydrocortisone 1% cream with dimethicone 330 2%) vs. ultrasound with clasp vs. phonophoresis with clasp; 12 treatments over maximum 6 weeks.</td>
<td>Mean subjective scores of pain at rest (pre/post): US 5.6/5.1 vs. Phono 14.3/12.2 vs. US plus clasp 5.6/7.8 vs. phono plus clasp 6.1/5.8. (Graph and data do not match. Graph suggests phono plus clasp far worse, but data suggest phono alone did worse).</td>
<td>“Our study has confirmed that ultrasound treatment does bring about a favourable response in the majority of patients. We found no suggestion that the application of a hydrocortisone coupling medium enhanced this favourable response.”</td>
<td></td>
</tr>
</tbody>
</table>

Ultrasound

Pilot study. Some baseline differences, including steroid injections (4/15 vs. 9/15). Baseline table is of completions. Data suggest eccentric exercises superior to stretching.
<table>
<thead>
<tr>
<th>Study</th>
<th>Duration</th>
<th>N</th>
<th>Description</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halle 1986</td>
<td>2.0</td>
<td>N = 48 with lateral epicondylitis (pain over common extensor origin with resisted wrist extension and point tenderness over epicondyle)</td>
<td>Ultrasound with coupling agent vs. ultrasound with 10% hydrocortisone coupling agent vs. transcutaneous electrical nerve stimulation vs. hydrocortisone and lidocaine injection. Treatment details not provided. Treatments QD for 5 days except injection. All treated with elbow cuff, avoiding strenuous activity, ice massage BID; 5 days treatment. Pain Intensity Index: US 16.5 vs. US with hydrocortisone 13.5 vs. TENS 1.5 vs. Injection 2.5 (latter 3 p<0.05). Pain rating index total: US 7.5 vs. US with hydrocortisone 16.0 vs. TENS 7.0 vs. Injection 3.0 (all but US with hydrocortisone p<0.05). Comparing pre/post tests: US 69% of variables improved, 12% same, and 19% worse. US with hydrocortisone 65% improved, 12 % same, 23% worse. TENS 56% improved, 23% same, 21% worse. Injections 63% improved, 25% same, 12% worse.</td>
<td>"While no difference was demonstrated to exist between the four treatment protocols, it was shown that improvement, as measured by the pain indexes, did occur over all four treatment groups when the pre-treatment and post-treatment values were compared."</td>
</tr>
<tr>
<td>Fernández-Carnero 2008</td>
<td>3.5</td>
<td>N = 10 with lateral epicondylitis ages 30 to 49 years who responded to a local advertisement; duration unclear.</td>
<td>Cervical spine manipulation (high velocity, low amplitude thrust manipulation directed at C5-6) vs. manual contact (simulated, but no thrust). No follow-up beyond 2 treatments (about 48 hours). Both groups similar pain threshold values for dominant (p = 0.2)/nondominant (p = 0.3). Hot pain thresholds not different for dominant (p = 0.8)/nondominant (p = 0.4). Cold pain thresholds similar, dominant (p = 0.8) and nondominant (p = 0.7). Pain free grip not different between groups (p = 0.3).</td>
<td>"No significant changes for HPT and CPT were found. Finally, cervical manipulation increased PFG on the affected side, but not the MGF on the unaffected arm."</td>
</tr>
<tr>
<td>Radpasand 2009</td>
<td>3.5</td>
<td>N= 6 with chronic lateral epicondylitis for at least 6 months and diagnosed by at least 2 of the following tests: palpation, resisted wrist</td>
<td>Group A (n=4): high-velocity low-amplitude manipulation (delivered as a HVLA thrust), high-voltage pulse galvanic stimulation, counterforce bracing (used hard pad’s knob exactly located on top of most painful area),</td>
<td>"The pilot study demonstrated that the study design is feasible and that patients could be recruited for a 12-week trial of multimodal treatment. A large trial is warranted in a multicenter setting to detect difference in the effects of these treatment strategies."</td>
</tr>
</tbody>
</table>

Manipulation and Mobilization

<table>
<thead>
<tr>
<th>Study</th>
<th>Duration</th>
<th>N</th>
<th>Description</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fernández-Carnero 2008</td>
<td>3.5</td>
<td>N = 10 with lateral epicondylitis ages 30 to 49 years who responded to a local advertisement; duration unclear.</td>
<td>Cervical spine manipulation (high velocity, low amplitude thrust manipulation directed at C5-6) vs. manual contact (simulated, but no thrust). No follow-up beyond 2 treatments (about 48 hours). Both groups similar pain threshold values for dominant (p = 0.2)/nondominant (p = 0.3). Hot pain thresholds not different for dominant (p = 0.8)/nondominant (p = 0.4). Cold pain thresholds similar, dominant (p = 0.8) and nondominant (p = 0.7). Pain free grip not different between groups (p = 0.3).</td>
<td>"No significant changes for HPT and CPT were found. Finally, cervical manipulation increased PFG on the affected side, but not the MGF on the unaffected arm."</td>
</tr>
</tbody>
</table>

Inadequate sample size. Study design somewhat unclear as possible crossover trial. No short or intermediate term results. Results suggest no differences, but likely underpowered if there is an effect.
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Design</th>
<th>Sample Size</th>
<th>Intervention</th>
<th>Occupational Status</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drechsler 1997 RCT</td>
<td>3.0</td>
<td>N = 18 with lateral epicondylitis (criteria unclear), Duration unclear</td>
<td>Neural tension group (mobilize radial head with wrist flexion/shoulder abduction; anterior-posterior mobilizations) plus HEP vs. standard treatment (US 1.0-1.5W/cm², 3MHz, 5 minutes; transverse friction massage, stretching), ice (applied ice for 10 minutes and removed for 15 minutes. Repeated twice 3 times per day), and exercises (forearm supinator and pronator muscles; forearm extensor and flexor muscle exercise, forearm supinator and pronator muscle exercise, and putty therapeutic exercise. Contractions performed for 10 seconds with 10 repetitions twice a day) vs. Group B (n=2) with ultrasound (3 MHz, 1.5 W/cm², and pulsed mode of 1 millisecond on and 5 milliseconds off for 8 minutes), counterforce bracing, and exercise.</td>
<td>Occupational status (pre/post/3 month): NT (2.0/1.5/1.23) vs. standard (1.5/1.6/1.5). Grip strengths NT (73.25/85.12/87.12) vs. standard (92.6/97.7/92.5).</td>
<td>“Results of the NTG (neural tension group) treatment were linked to the radial head treatment, and isolated effects of the NTG treatment could not be determined. There were no long-term positive results in the (standard treatment group).”</td>
<td>Small sample sizes that preclude quality assessments. Baseline differences (e.g., mean grips 73 vs. 92 pounds). Multiple co-interventions. All received HEP. No placebo/sham control.</td>
</tr>
</tbody>
</table>
strengthening, HEP). Average 2 times a week 6 weeks; 3 months follow-up.

| Burton 1988 RCT | 3.0 | N = 33 with tennis elbow (pain, tenderness, at least 2 of pain with increased grip/twist/ lift, pain with resisted MF extension, pain with pronation/wrist flexion). Duration less than 3 months (mean 4.8 weeks). | All received manual therapy, 2 times a week for first week, then once a week. Strap (Chen strap) all day vs. Benzydamine topical cream 5 times a day vs. strap plus NSAID cream. No follow-up beyond 3 week trial. | Mean pain scores (pre/3 days/1 week/3 weeks): Strap plus NSAID (3.6/2.8/2.5/1.5) vs. NSAID cream (3.0/2.5/1.7/1.0) vs. Strap (3.2/2.8/2.5/1.6) vs. Manipulation only (3.2/2.8/2.5/1.5). | “The results do not show any therapeutic advantage from the use of these adjuncts, when assessed over three weeks, though the majority of patients in all groups were significantly improved.” | Sparse details. Small sample sizes among 4 groups. No short or longer term follow-up. Likely underpowered for differences, especially in relatively acute population with better prognoses. |

| Nourbakhs 2008 RCT | 2.5 | N = 23 (age 24-72) with lateral epicondylitis; duration at least 3 months (means 17 and 20 months). | Oscillating-energy manual therapy (OMET) vs placebo (sham). 6 treatments over 2 to 3 weeks. No subsequent follow-up in both groups. | Grip strengths (pre/post: OMET (61.3/73.6) vs. sham (81.1/79.2); OMET with improved pain intensity (p = 0.000), functional level (p = 0.000), and pain limited activity (p = 0.004). Placebo group did not improve. | “[O]MET could significantly improve the symptoms of chronic LE in a relatively short period of time.” | Unclear how 2 RCTs run simultaneously. Trial claims double blinding, but patient blinding not plausible when manual therapy differed. Blinding/sham adequacy not assessed; small sample, unclear how many drops. Major baseline difference in grip strength suggests randomization failure. Reductions in grip strength post-treatment unexplained. |

| Dwars 1990 RCT | 1.5 | N = 120 patients with tennis elbow | Elbow support (Epitrain) worn all day (n = 60) vs. physical therapy (friction massage plus stretching) (n = 60) for 6 weeks | No difference between groups for pain changes. Patients with elbow support more satisfied vs. physical therapy group. | “[T]he favorable results warrant the use of the elbow support for the treatment of tennis elbow.” | Many details sparse. Results suggest support as effective as physical therapy. |

Massage, Including Friction Massage

Extracorporeal Shockwave Therapy
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>N</th>
<th>Condition</th>
<th>Intervention</th>
<th>Outcome</th>
<th>Confounders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melegati 2004 RCT</td>
<td>3.5</td>
<td>N = 41</td>
<td>with lateral epicondylitis</td>
<td>Extracorporeal shockwave therapy with lateral tangential focusing vs. back tangential focusing.</td>
<td>No statistically significant difference between groups in initial TESS and VAS (p >0.05), but both groups did make a significant increase in TESS follow up scores (p <0.05) and significant decrease in VAS (p <0.05).</td>
<td>“According to TESS and VAS scores both localization techniques gave a decrease of symptoms but did not eliminate the pain.” “There was no difference between the two techniques of using ESWT.”</td>
</tr>
<tr>
<td>Rompe 2001 Prospective RCT/Matched Prospective Trial</td>
<td>3.5</td>
<td>N = 60</td>
<td>diagnosed with lateral epicondylitis who did not respond to conservative treatment for 6 months or longer.</td>
<td>30 patients received 1000 impulses of shock waves once a week for 3 weeks and also received manual therapy to the cervical spine (group 1) vs. 30 patients received 1000 impulses of shock waves once a week for 3 weeks (group 2) with follow-ups at 3 months and 12 months.</td>
<td>At 3 months, 12 patients in group 1 and 15 patients in group 2 had an excellent or good condition. At 12 months, 15 patients in group 1 and 15 patients in group 2 had a good or excellent condition. No significant differences found between two groups. Within the 2 groups, significant difference in the improvement on the VAS and on Roles and Maudsley outcome scores at both follow-ups (p<0.001).</td>
<td>The authors concluded “ESWT may be an effective conservative treatment for unilateral chronic tennis elbow. The efficacy of additional cervical manual therapy for lateral epicondylitis remains questionable.” Many details sparse. Data suggest cervical manipulation of no additive benefit to ESWT.</td>
</tr>
<tr>
<td>Melikyan 2003 RCT</td>
<td>2.5</td>
<td>N = 74</td>
<td>with chronic lateral epicondylitis awaiting surgery</td>
<td>Extracorporeal shockwave therapy vs. sham. 12 months follow-up.</td>
<td>No difference between groups at any point or in rate of improvement of score (p = 0.87). Mean pain on lifting 5kg dumbbell decreased significantly over time in both groups (p <0.001), NS between groups. Grip strength with elbow flexed 90° and arm adducted (M1) not improved in either group (baseline, 29.5kg; 12 months, 34.2kg, p = 0.22). Mean grip strength (M2) improved (baseline, 21.2kg; 12 months, 32.4kg; p <0.001). No difference between groups before treatment (p = 0.77 and p = 0.93, for M1/M2) or follow-up (p =</td>
<td>“We have not been able to show a significant difference between the treatment and the control groups in respect of any of the measured parameters at this dosage.” “Study showed no evidence that extracorporeal shockwave therapy for tennis elbow is better than placebo.” Confounders addressed age, gender, and use of analgesics. Both treatment and placebo trended towards improvement. There was no difference in the proportion of patients using analgesics at any stage.</td>
</tr>
<tr>
<td>Study</td>
<td>Methodology</td>
<td>N</td>
<td>Description</td>
<td>Results</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Crowther 2002 RCT</td>
<td>2.0</td>
<td>N = 93 with tennis elbow</td>
<td>Steroid injection (triamcinolone 20mg plus lignocaine) vs. extracorporeal shockwave therapy; 3 months follow-up.</td>
<td>Group 1 (steroid injection): 6 weeks after injection, mean VAS fell from pre-treatment level of 67 to 21, and at 3 months 12. Group 2 (ESWT) VAS score fell from 61 before treatment to 35 at 6 weeks after end of treatment (tailed t-test, p = 0.052) and to 31 at 3 months. Using a reduction of pain of 50% as a criterion of success at 3 months after treatment end, 21 (84%) of Group 1 had pain reduction ≥50% vs. 29 (60%) of Group 2 (chi-squared test, p <0.05).</td>
<td>"Our results have shown that injection of steroid and local anaesthetic was more effective than ESWT in the treatment of lateral epicondylitis, although both treatments relieve symptoms." Confounders addressed: age and gender. Data suggest steroid injection superior to ESWT.</td>
<td></td>
</tr>
<tr>
<td>Holdsworth 1993 RCT</td>
<td>3.0</td>
<td>N = 36 with lateral epicondylitis. Duration 2 weeks to 18 months.</td>
<td>Ultrasound (3MHz, 1.5W/cm²) with aquasonic 100 v. phonophoresis (ultrasound with hydrocortisone 1% cream with dimethicone) vs. ultrasound with clasp (Thämert) v. phonophoresis with clasp; 12 treatments maximum 6 weeks.</td>
<td>Mean subjective scores of pain at rest (pre/post): US 5.6/5.1 vs. Phono 14.3/12.2 vs. US plus clasp 5.6/7.8 vs. phono plus clasp 6.1/5.8. (Graph and data do not match. Graph suggests phono plus clasp far worse, but data suggest phono alone did worse).</td>
<td>"Our study has confirmed that ultrasound treatment does bring about a favourable response in the majority of patients. We found no suggestion that the application of a hydrocortisone coupling medium enhanced this favourable response." Small group sizes. Unclear if blinded ("independent") assessor. If so, study is moderate quality by score. Data suggest equivalency, but are likely underpowered for effects.</td>
<td></td>
</tr>
<tr>
<td>Emanet 2010 RCT</td>
<td>3.5</td>
<td>N= 49 having symptoms of lateral epicondylitis for less than 3 months duration</td>
<td>Patients received 15 sessions of laser (Endolaser 422-230 VAC, laser probe one diode laser, LP 100) to most sensitive points around lateral epicondyle with dose of 1 J/cm² for 2 minutes (5d).</td>
<td>No significant differences were found between groups though at 12 weeks both group had significant improvement.</td>
<td>"Although low energy laser therapy had no advantage compared to placebo in patients with LE for the short term, a significant improvement, particularly in functional parameters, was achieved in the long term. Laser, which has relatively no side effects, might be included among long-term treatment options for LE." Some data suggest place group worse at baseline. Sequential allocations. Less than 3 month duration. Quasi randomized trial with 12 weeks follow-up.</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Authors</td>
<td>N</td>
<td>Study Design</td>
<td>Study Population</td>
<td>Intervention</td>
<td>Outcome Measures</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1998</td>
<td>Simunovic</td>
<td>324</td>
<td>RCT</td>
<td>N = 324 with medial or lateral epicondylitis (case definitions not provided) durations unclear though at minimum include subacute and chronic</td>
<td>Patients with bilateral symptoms all underwent trigger point technique (tender point). Patients with unilateral symptoms randomly allocated to 1 of 3 treatment groups: trigger points, scanner, and combination therapy.</td>
<td>No significant differences between 2 groups when both centers combined. Statistically significant difference was found between the groups with the scanner technique (p < 0.05). In acute cases, scanner technique was favored over TPs (p > 0.001). For acute and chronic a significant difference was found favoring scanner technique over combination technique (p < 0.001).</td>
</tr>
<tr>
<td>2002</td>
<td>Tsui</td>
<td>20</td>
<td>RCT</td>
<td>N = 20 with pain over lateral epicondyle</td>
<td>Manual acupuncture (MA) (n=10) vs. electro-acupuncture (EA) (n = 10) 3 times a week for 2 weeks. Study duration unclear, possibly no follow-up beyond 2 weeks (not stated).</td>
<td>Pain VAS scores favored EA vs. MA (p < 0.001) and EA. Pain free grip better in both groups vs. baseline control (p < 0.05).</td>
</tr>
<tr>
<td>2008</td>
<td>Reza Nourbakhsh</td>
<td>18</td>
<td>RCT</td>
<td>N = 18 (ages 24 to 72) with lateral epicondylitis (apparently required all of tenderness)</td>
<td>Noxious level electrical stimulation (4Hz, DC for 30s to the most tender point, “adjusted to the subject’s Grip strengths (pre/post): E-stim (70.4/90.2) vs. sham (91.5/89.2), p = 0.04. Pain intensity: E-stim (4.2/1.1) vs. sham (3.85/4.0), p = 0.01. Noxious level e-stim superior for functional</td>
<td>“[T]reating tender points over the lateral epicondyle with low-frequency hyperstimulation could clinically improve pain, grip strength, limited activity due to pain Unclear how 2 RCTs run simultaneously and whether double enrolled. Trial claims double blinding, but patient blinding not plausible when “noxious” level stimulation used and</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Methodology</td>
<td>Participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Weng 2005 Randomized Crossover Trial</td>
<td>2005</td>
<td>N=20 patients between the ages of 20-30 with tennis elbow pain for at least 3 months</td>
<td>5 KHz modulated by 2 Hz frequency mode TENS on acupuncture points LI10 and LI11 (LF group) vs. 5 KHz modulated by 100 Hz frequency mode of TENS on acupuncture points LI10 and LI11 (HF group) vs. sham TENS (control group) 15 minutes per visit, 3 times a week for 2 weeks.</td>
<td>VAS (before/after): control (4.80±1.93/4.95±2.01) vs. LF (4.40±2.16/3.70±2.00, p<0.05) vs. HF (4.16±2.37/3.42±2.01, p<0.05). Percentage change in VAS: control (4.16±25.0, p<0.05) vs. LF (-18.5±18.1, p<0.05) vs. HF (-16.3±16.56, p<0.05).</td>
<td>([A]cupuncture-like TENS with modulated frequency may be a good treatment choice for patients with tennis elbow pain.)</td>
<td></td>
</tr>
<tr>
<td>Saartok 1986 RCT</td>
<td>1986</td>
<td>N = 21 with lateral epicondylitis</td>
<td>Naproxen 250mg BID for 2 weeks (initial 500mg dose) vs. betamethasone 6mg plus prilocaine injection (long acting form given as injection). Follow-up unclear, but possibly 2 weeks.</td>
<td>Grip strength improved 9% in naproxen vs. 2% betamethasone (NS). Doctor’s evaluations were 50% improved on naproxen vs. 40% with injection at 2 weeks (NS).</td>
<td>"The results of this pilot study indicate that oral naproxen (250 mg twice daily for two weeks) is as effective as a single injection of a corticosteroid into the site of tenderness in the treatment of epicondylitis."</td>
<td></td>
</tr>
<tr>
<td>Halle 1986</td>
<td>1986</td>
<td>N = 48 with lateral epicondylitis</td>
<td>Ultrasound with coupling agent</td>
<td>Pain Intensity Index: US 16.5 vs. US with</td>
<td>"While no difference was demonstrated to be statistically significant, the results suggest that ultrasound may provide some relief for patients with lateral epicondylitis."</td>
<td></td>
</tr>
</tbody>
</table>

TENS

Glucocorticoid Steroid Injections

Saartok 1986 RCT

N = 21 with lateral epicondylitis

Naproxen 250mg BID for 2 weeks (initial 500mg dose) vs. betamethasone 6mg plus prilocaine injection (long acting form given as injection). Follow-up unclear, but possibly 2 weeks.

Grip strength improved 9% in naproxen vs. 2% betamethasone (NS). Doctor’s evaluations were 50% improved on naproxen vs. 40% with injection at 2 weeks (NS).

"The results of this pilot study indicate that oral naproxen (250 mg twice daily for two weeks) is as effective as a single injection of a corticosteroid into the site of tenderness in the treatment of epicondylitis."

Small sample. Groups well matched for variables: age, sex, duration of present condition, chronicity and probable causative factor. Previous history of other disorders of locomotor system more common in naproxen group (8 vs. 3). Data suggest no differences over short duration, likely underpowered.

Glucocorticoid Steroid Injections

Saartok 1986 RCT

N = 21 with lateral epicondylitis

Naproxen 250mg BID for 2 weeks (initial 500mg dose) vs. betamethasone 6mg plus prilocaine injection (long acting form given as injection). Follow-up unclear, but possibly 2 weeks.

Grip strength improved 9% in naproxen vs. 2% betamethasone (NS). Doctor’s evaluations were 50% improved on naproxen vs. 40% with injection at 2 weeks (NS).

"The results of this pilot study indicate that oral naproxen (250 mg twice daily for two weeks) is as effective as a single injection of a corticosteroid into the site of tenderness in the treatment of epicondylitis."

Small sample. Groups well matched for variables: age, sex, duration of present condition, chronicity and probable causative factor. Previous history of other disorders of locomotor system more common in naproxen group (8 vs. 3). Data suggest no differences over short duration, likely underpowered.

Glucocorticoid Steroid Injections

Saartok 1986 RCT

N = 21 with lateral epicondylitis

Naproxen 250mg BID for 2 weeks (initial 500mg dose) vs. betamethasone 6mg plus prilocaine injection (long acting form given as injection). Follow-up unclear, but possibly 2 weeks.

Grip strength improved 9% in naproxen vs. 2% betamethasone (NS). Doctor’s evaluations were 50% improved on naproxen vs. 40% with injection at 2 weeks (NS).

"The results of this pilot study indicate that oral naproxen (250 mg twice daily for two weeks) is as effective as a single injection of a corticosteroid into the site of tenderness in the treatment of epicondylitis."

Small sample. Groups well matched for variables: age, sex, duration of present condition, chronicity and probable causative factor. Previous history of other disorders of locomotor system more common in naproxen group (8 vs. 3). Data suggest no differences over short duration, likely underpowered.
RCT

epicondylitis (pain over common extensor origin with resisted wrist extension and point tenderness over epicondyle)

vs. ultrasound with 10% hydrocortisone coupling agent vs. transcutaneous electrical nerve stimulation vs. hydrocortisone and lidocaine injection.

Details of treatment not provided.
Treatments QD for 5 days except injection. All treated with elbow cuff, avoiding strenuous activity, ice massage BID. Five days treatment.

hydrocortisone 13.5 vs. TENS 1.5 vs. Injection 2.5 (latter 3 p<0.05). Pain rating index total: US 7.5 vs. US with hydrocortisone 16.0 vs. TENS 7.0 vs. Injection 3.0 (all but US with hydrocortisone p<0.05). Comparing pre/post tests: US 69% of variables improved, 12% same, and 19% worse. US with hydrocortisone 65% improved, 12% same, 23% worse. TENS 56% improved, 23% same, 21% worse. Injections 63% improved, 25% same, 12% worse.

exist between the four treatment protocols, it was shown that improvement, as measured by the pain indexes, did occur over all four treatment groups when the pre-treatment and post-treatment values were compared."

Placebo. Short follow up (5 days). Poor blinding, though ultrasound attempted blinding. No description of randomization/confounders – no discussion of individual group demographics. One-tailed t-tests. Conclusions of lack of differences between groups appear likely underpowered and incorrect.

Toker 2008

RCT

1.5

N = 21 with lateral elbow pain with confirmed tennis elbow after physical exam.

Depomedrol 1mL plus prilocaine 1mL plus oral diclofenac plus topical etofenamate cream (n=11) v. oral anti-inflammatory treatment (n=10).

Anti-inflammatory group showed a significant improvement in pain scores from before and after treatment (p=0.003).

"[S]ignificantly enhanced efficacy of the combination treatment used in this study might be limited to the short-term and that adverse effects of steroids on the tendons should be taken into consideration."

Sparse details. Unknown follow-up duration. No medication doses provided.

MEDIAL EPICONDYLALGIA

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simunovic 1998</td>
<td>RCT</td>
<td>2.5</td>
<td>N = 324 with medial or lateral epicondylitis (case definitions not provided) durations unclear though at minimum include subacute and chronic</td>
<td>Patients with bilateral symptoms all underwent trigger point technique (tender point). Patients with unilateral symptoms randomly allocated to one of 3 treatment groups: trigger points, scanner, and combination therapy.</td>
<td>No significant differences between groups when both centers combined. Statistically significant difference between groups with scanner technique (p <0.05). In acute cases, scanner technique favored over TPs (p >0.001). For acute and chronic a significant difference favored scanner over</td>
<td>"The current clinical study provides further evidence of the efficacy of LLLT in the management of lateral and medial epicondylitis."</td>
<td>Stated technician blinded, but unclear how possible. Not stratified, analyses use both lateral and medial epicondylitis combined. Lack of analyses and smaller numbers of medial epicondylitis suggests non-significant results. Strong potential for bias (as seen in combination vs. each location analyses). Details sparse, unclear methodology, selection, case definition,</td>
</tr>
</tbody>
</table>
combination technique ($p < 0.001$).

Adelaar 1987 RCT
N = 18 with lateral, medial or “posterior” epicondylitis
Diflunisal (initial dose of diflunisal 1000mg followed by diflunisal 500mg every 12 hours for a period of up to 15 days) vs. Naproxen.
No statistically significant differences any categories between study drugs or pre- and post-test results at 5th level single tail distribution. One patient receiving diflunisal developed transient nausea and stomach cramps though both study agents generally well tolerated.
“Diflunisal and naproxen were generally effective in the treatment of mild to moderate pain associated with epicondylitis; there were no significant differences between the drugs.”
Methods not well described. Open-label. Small study population. Short duration (15 days). No placebo group.

OLECRANON BURSITIS

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study Type</th>
<th>Score (0-11)</th>
<th>Sample Size</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspiration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weinstein 1984</td>
<td>Controlled clinical trial</td>
<td>3.5</td>
<td>N=60 males with traumatic olecranon bursitis followed 31 months (range 6-62).</td>
<td>Bursal aspiration vs. aspiration plus corticosteroid injection. Techniques and doses may have varied.</td>
<td>Final data obtained from 49 (82%). Faster resolution with steroid injection (graphic interpretation: effusions in 4% vs. 28% at 4wks).</td>
<td>“[L]ocal corticosteroid is an effective treatment for traumatic olecranon bursitis, the high incidence of side effects and self-limiting nature of the condition indicate conservative therapy for most patients.”</td>
<td>Not randomized. Clinical trial. Many details sparse. Data suggest complications occurred in those treated with corticosteroid injection.</td>
</tr>
</tbody>
</table>

ELBOW FRACTURES

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study Type</th>
<th>Score (0-11)</th>
<th>Sample Size</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immobilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Leemput 2007</td>
<td>Pseudo-randomized</td>
<td>3.0</td>
<td>N = 102 allocated by date of hospital; excluded open</td>
<td>Immobilization in below-elbow for 3 weeks vs. above-elbow for 3 weeks vs. below-elbow for</td>
<td>Bony healing times above/below 3 weeks 10.7 weeks (12.5% delayed union) vs. 6 weeks 10.5 weeks (13.9%)</td>
<td>“[A]ll three different conservative treatment strategies were compared and showed good</td>
<td>Randomization by date of presentation. Data suggest equal efficacy.</td>
</tr>
<tr>
<td>Clinical Trial</td>
<td>Fractures, <18 years, obvious signs of infection in fracture, and multiple traumas.</td>
<td>6 weeks vs compression bandage and immediate mobilization for 6 weeks; 12 weeks follow-up.</td>
<td>Delayed union) vs. no plaster cast 10.4 weeks (11.8% delayed union), NS. No differences in VAS scores, loss of rotation arc, loss of flexion/extension arc, or bony healing time.</td>
<td>Comparable results in terms of healing, healing time, pain and function.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ULNAR NEUROPATHIES – CUBITAL TUNNEL

<table>
<thead>
<tr>
<th>Author/Year Study Type</th>
<th>Score (0-11)</th>
<th>Population</th>
<th>Comparison Group</th>
<th>Results</th>
<th>Conclusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of Motion Exercises</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warwick 1995 RCT</td>
<td>2.5</td>
<td>N = 57 after cubital tunnel release surgery with medial epicondylec tomy.</td>
<td>Physical therapy group with active and passive range of motion (ROM) exercises started 14 days postoperatively (n=29) vs. same treatment regimen started 3 days postoperatively.</td>
<td>Final elbow ROM for extension for those not achieving full active extension comparing group 1 vs. group 2: 51% vs. 4%; p<0.001.</td>
<td>“[B]etter results can be obtained by starting rehabilitation immediately following cubital tunnel surgery with medial epicondylectomy.”</td>
<td>Data suggest early mobilization superior for ROM and RTW (2.2 vs. 4 months)</td>
</tr>
<tr>
<td>Glucocorticoid Steroid Injections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hong 1996 RCT</td>
<td>3.5</td>
<td>N = 10 men with 12 ulnar nerve lesions at the elbow. All showed signs and symptoms of ulnar neuropathy. Nerve conduction tests used, but not well described.</td>
<td>Nocturnal splint therapy only (n=5 nerves) vs. splint plus triamcinolone 40mg plus lidocaine 1% 2mL into the cubital tunnel and around ulnar nerve (n=7 nerves). Follow-up at 1 and 6 months.</td>
<td>Severity of symptoms (pre/1mo/6mo): splint (3.4±0.8/1.6±1.2/1.8±1.1) vs. combined (3.3±0.9/1.7±0.8/1.1±0.8), NS between treatments. Both groups also improved with signs, but NS. No change in sensory conduction was in either group at 1 or 6 months (p>0.05). Both groups did not differ.</td>
<td>“[S]plinting alone seems to be adequate for treatment of ulnar neuropathy at the elbow, since local steroid injection did not offer any additional benefit.”</td>
<td>Small sample sizes. No mention of definition of ulnar neuropathy, especially condylar groove vs. cubital tunnel with NCS, which may be critical.</td>
</tr>
</tbody>
</table>
Appendix Three: References

219. Holdsworth L, Anderson D. Effectiveness of ultrasound used with a hydrocortisone coupling medium or epicondylitis clasp to treat lateral epicondylitis: pilot study Physiotherapy. 1993;7919.

